K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
30 tháng 9 2021
a: Xét (O) có
AB là tiếp tuyến có B là tiếp điểm
AC là tiếp tuyến có C là tiếp điểm
Do đó: AB=AC
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(1)
ta có: BA=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA⊥BC
5 tháng 3 2022
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó:AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
từ (1) và (2) suy ra OA\(\perp\)BC(3)
b: Xét (O) có
ΔDBC nội tiếp
DC là đường kính
Do đó: ΔDBC vuông tại B
=>BC\(\perp\)BD(4)
Từ (3) và (4) suy ra BD//OA
Để chứng minh tứ giác OMAN nội tiếp, ta cần chứng minh tổng hai góc đối nhau bằng 180 độ.
Ta có:
Vậy, góc OAN + góc OMA = 90 độ + 90 độ = 180 độ.
Tương tự, ta cũng có góc MAN + góc MOA = 180 độ.
Vậy, tứ giác OMAN nội tiếp.
Diện tích phần tứ giác nằm ngoài hình tròn là diện tích tam giác OAN trừ đi diện tích phần hình tròn OAN.
Diện tích tam giác OAN = 1/2 * OA * ON = 1/2 * 2R * R = R^2.
Góc AON = 90 độ (vì AN là tiếp tuyến của đường tròn tại N), nên diện tích phần hình tròn OAN = 1/4 * pi * R^2.
Vậy, diện tích phần tứ giác nằm ngoài hình tròn = R^2 - 1/4 * pi * R^2.
Thích bn nhé!