Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác OBAC có
góc OBA+góc OCA=180 độ
nên OBAC là tứ giác nội tiêp
Tâm là trung điểm của OA
b: Xét tứ giác OHAC có
góc OHA+góc OCA=180 độ
=>OHAC là tứ giác nội tiếp
=>góc CHA=góc AOC
Xét tứ giác OHBA có
góc OHA=góc OBA=90 độ
nên OHBA là tứ giác nội tiếp
=>góc BHA=góc BOA=góc COA=góc CHA
=>HA là phân giác của góc BHC
a: ΔODE cân tại O có OI là trung tuyến
nên OI vuông góc DE
góc OIA=góc OBA=90 độ
=>OIBA nội tiếp
b: Xét (O) có
AC,AB là tiếp tuyến
=>AC=AB
mà OB=OC
nên OA là trung trực của BC
=>BC vuông góc OA tại H
=>AH*AO=AB^2
Xét ΔABE và ΔADB có
góc ABE=góc ADB
góc BAE chung
=>ΔABE đồng dạng với ΔADB
=>AB/AD=AE/AB
=>AB^2=AD*AE=AH*AO
Mình chưa vẽ hình nhưng mà câu c bạn có sai không? Tại vì bạn ghi thế thì có khác gì chứng minh AK=AD đâu. Bạn xem lại nhá
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét (O) có
\(\widehat{BDE}\) là góc nội tiếp chắn cung BE
\(\widehat{ABE}\) là góc tạo bởi tiếp tuyến BA và dây cung BE
Do đó: \(\widehat{BDE}=\widehat{ABE}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)
hay \(\widehat{ADB}=\widehat{ABE}\)
Xét ΔADB và ΔABE có
\(\widehat{ADB}=\widehat{ABE}\)(cmt)
\(\widehat{BAD}\) chung
Do đó: ΔADB\(\sim\)ΔABE(g-g)
Suy ra: \(\dfrac{AD}{AB}=\dfrac{AB}{AE}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=AE\cdot AD\)(đpcm)