Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA\(\perp\)BC
a: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại trung điểm của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
b: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
=>BE\(\perp\)ED tại E
=>BE\(\perp\)AD tại E
Xét ΔDBA vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(3\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(4\right)\) và \(OH\cdot OA=OB^2\)
Từ (3) và (4) suy ra \(AE\cdot AD=AH\cdot AO\)
c: Xét ΔOKH vuông tại K và ΔOIA vuông tại I có
\(\widehat{KOH}\) chung
Do đó: ΔOKH đồng dạng với ΔOAI
=>\(\dfrac{OK}{OA}=\dfrac{OH}{OI}\)
=>\(OK\cdot OI=OH\cdot OA\)
mà \(OH\cdot OA=OB^2\)
nên \(OK\cdot OI=OB^2=R^2=OD^2\)
=>\(\dfrac{OK}{OD}=\dfrac{OD}{OI}\)
Xét ΔOKD và ΔODI có
\(\dfrac{OK}{OD}=\dfrac{OD}{OI}\)
\(\widehat{KOD}\) chung
Do đó: ΔOKD đồng dạng với ΔODI
=>\(\widehat{ODK}=\widehat{OID}=90^0\)
=>KD là tiếp tuyến của (O)
a) Xét tứ giác OBAC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay O,B,A,C cùng thuộc 1 đường tròn(đpcm)
Từ điểm A ở ngoài đường tròn [O;R] vẽ hai tiếp tuyến AB;AC với đường tròn [B,C là tiếp điểm ]. Gọi H là chân đường vuông góc kẻ từ B đến đường kính CD.
a cm 4 điểm A,B,C,O cùng thuộc 1 đường tròn
b cm BD //OA
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA\(\perp\)BC(3)
b: Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD(4)
Từ (3) và (4) suy ra CD//OA