Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là \(\overline{abcd}\)
TH1: \(d=0\)
\(\Rightarrow\) abc có \(A_9^3=504\) cách chọn
TH2: \(d=5\)
\(\Rightarrow\) a có 8 cách chọn (khác 0 và 5), b có 8 cách (khác a và d), c có 7 cách
\(\Rightarrow8.8.7=448\) cách chọn abc
\(\Rightarrow504+448=952\) số
Đáp án C
Có 5 cách chọn vị trí cho chữ số 0.
Với mỗi cách chọn trên lại có 5 cách chọn vị trí cho chữ số 1
và có A 8 4 cách chọn vị trí cho 4 trong 8 chữ số còn lại.
Vậy có tất cả 5 . 5 . A 8 4 = 42000 số gồm 6 chữ số khác nhau và trong các chữ số đó có mặt chữ số 0 và 1
Gọi số tự nhiên cần tìm có dạng \(\overline{abcde}\)
Do a chỉ thuộc {1;2} nên ta chia 2 trường hợp
Trường hợp a=2(b<5):
b có 5 cách chọn
c có 5 cách chọn
d có 4 cách chọn
e có 3 cách chọn
Do đó với trường hợp a=2 ta có: 5.5.4.3=300(cách)
Trường hợp a=1:
b có 6 cách chọn
c có 5 cách chọn
d có 4 cách chọn
e có 3 cách chọn
Do đó trường hợp a=1 có 6.5.4.3=360(cách)
Từ đó để lập được các số tự nhiên thõa đề có: 300+360=660(cách)
Bạn có thể kiểm tra kỹ lại, trong quá trình làm có thể có sai xót về số nhưng hướng làm thì ổn rồi
Đáp án là C
Số cách chọn 2 số chẵn trong tập hợp 2 ; 4 ; 6 ; 8 là: C 4 2 cách.
Số cách chọn 2 số lẻ trong tập hợp 1 ; 3 ; 5 ; 7 ; 9 là: C 5 2 cách.
Số cách hoán vị 4 chữ số đã chọn lập thành 1 số tự nhiên là: 4! cách.
Vậy có 4 ! . C 4 2 . C 5 2 số tự nhiên thỏa mãn yêu cầu bài toán.
Gọi số cần lập là \(\overline{a_1a_2a_3a_4}\)\(=m\in A\), \(a_i\ne a_j\)
a) a1\(\ne\)0\(\Rightarrow\)a1 có 9 cách chọn
Xếp 3 chữ số trong 9 chữ số còn lại có \(A_9^3\)
Có tất cả 9*\(A_9^3\)số cần lập
b)Số chẵn a4\(\in\)\(\left\{0,2,4,6,8\right\}\)
+ Với a4=0 có 1 cách chọn
Xếp 3 số trong A\\(\left\{0\right\}\)vào 3 vị trí còn lại có \(A_9^3\)
Có 1*\(A_9^3\)số cần lập.
+Với a4\(\in\)\(\left\{2,4,6,8\right\}\) có 4 cách chọn
Chọn a1 có 8 cách trong A\(\backslash\left\{0,a_4\right\}\)
Chọn 2 trong X\(\backslash\left\{a_1,a_4\right\}\) vào 4 vị trí còn lại có \(A_8^2\) số cần lập
có 4*8*\(A_8^2\)
vậy có tất cả 2269 số cần lập( cộng hai trường hợp trên).
a)\(A_9^4\)
b)Gọi số cần lập là \(\overline{a_1a_2a_3a_4}=m\)\(\in A\),\(a_i\ne a_j\)
Số cần lập là số chẵn nên a4\(\in\left\{2,4,6,8\right\}\) \(\Rightarrow\) có 4 cách chọn a4
Chọn 3 trong 8 chữ số của A\\(\left\{a_1\right\}\)\(\Rightarrow\)có \(A_8^3\)
có tất cả \(4\cdot A_8^3\)số cần lập
Gọi số đó là \(\overline{abcd}\)
TH1: \(d=0\)
\(\Rightarrow\) abc có \(A_9^3=504\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (2;4;6;8)
a có 8 cách chọn (khác 0 và d) , b có 8 cách (khác a và d), c có 7 các (khác a;b;d)
\(\Rightarrow4.8.8.7=1792\) cách
Tổng cộng: \(504+1792=2296\) số