K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

Đặt B = {1, 2, 3, 4, 5, 6}

+ Gọi số tự nhiên bé hơn 100 là a và cd

+ Số cách chọn chữ số a là 6 cách

+ Số cách chọn chữ số c là 6 cách

+ Số cách chọn chữ số d là 6 cách

+ Số cách chọn chữ số cd là 6.6 = 36 cách.

Theo quy tắc cộng thì số cách chọn thỏa yêu cầu bài toán là:

6 + 36 = 42 (số)

8 tháng 4 2018

Đặt A = {1, 2, 3, 4, 5, 6 }

a.Tập hợp A gồm 6 phần tử. Để lập được số tự nhiên có 6 chữ số khác nhau thì mỗi số như vậy được coi là một chỉnh hợp chập 6 của 6 phần tử.

\(\text{Vậy các số đó là: }A_6^6=\frac{6!}{\left(6-6\right)!}=6!=720\text{(số)}\)

b. *Cách 1:

Số chẵn là các số có tận cùng 2, 4, 6

- Gọi số chẵn 6 chữ số khác nhau là abcdef

- Với f = 2, 4, 6 nên có 3 cách chọn f ( f ≠ a, b, c, d, e)

Có 5 cách chọn chữ số a;

Có 4 cách chọn chữ số b (b ≠ a)

Có 3 cách chọn chữ số c(c ≠ a, b);

Có 2 cách chọn chữ số d (d ≠ a, b, c);

Có 1 cách chọn chữ số e (e ≠ a, b, c, d);

Vậy theo quy tắc nhân có: 3.1.2.3.4.5 = 3.5! = 360 (số)

*Cách 2:

Với f = 2, 4, 6 có 3 cách chọn f

a, b, c, d, e ≠ f nên có = 5! cách chọn.

Vậy số cách chọn: 5!.3 = 360 (số)

Gọi số lẻ có 6 chữ số a1b1c1d1e1f1

Ta có: f1 = 1, 3, 5 nên có 3 cách chọn a1, b1, c1, d1, e1 ≠ f1 nên có A 55 cách chọn.

Vậy ta có: 3.5! = 360 số

c. Để có một số có 6 chữ số khác nhau lập từ 6 chữ số trên và nhỏ hơn 432.000 ta có thể:

- Chọn chữ số hàng trăm nghìn nhỏ hơn 4: có 3 cách chọn

Với 5 chữ số còn lại có 5! Cách chọn. Số các số như vậy là:

n1 = 3 .5! = 360 số.

- Chọn chữ số đầu là 4, chữ số thứ hai nhỏ hơn 3 và 4 chữ số còn lại.

Số các số như vậy là: n2 = 2.4! = 48 số

- Chọn hai số đầu là 43 và chữ số thứ 3 nhỏ hơn 2:

Số các số như vậy là: n3 = 3! = 6 số

Vậy số các số nhỏ hơn 432.000 là:

n = n1 + n2 + n3= 360 + 48 + 6 = 414 số.

Mỗi số 2020,3030,4040,5050,6060,7070,8080,9090.

đều có 10 chữ số đôi hàng nghìn như thế.

Vậy có tất cả: 10.8=80( số)

Từ 10 chữ số trên ta lập được tất cả 9.9.8.7=4536 số

Ta đi tính có bao nhiêu số có 4 chữ số đôi một khác nhau nhỏ hơn hoặc bằng 2019

Gọi số đó là abcd

TH1 a=1

khi đó chọn b có 9 cách

                     c có 8 cách

                    d có 7 cách

       => có tất cả 9.8.7 số

TH2 a=2

Khi đó ta đếm được có 2013,2014,2015,2016,2017,2018,2019 =>có 7 số

=>có tất cả 511 số có 4 chữ số đôi một khác nhau nhỏ hơn hoặc bằng 2019

=>lập được 4536-511=4025 số tm yêu cầu đề bài

22 tháng 11 2014

1a) gọi số cần lập là abcde
(a khác 0...)

chọn a thuộc tập số trên\{0} => có 4 cách chọn
chọn b có 5 c
chọn c có 5c
chọn d có 5c
 chọn e có 5c
ADQT nhân có 4x5x5x5x5 = ....
vậy có....
b)chọn a khác 0 có 4 c
chọn b khác a có 4c
chọn c khác a và b có 3 c
chọn d khác a, b, c, có 2c
=> ADQT nhân có 4x4x3x2 =...
vậy...
c) chọn a khác o có 4 c
chọn các c/số còn lại là 1 chỉnh hợp chập 2 của 4 phần tử(trừ a) => có 4A2 cách
ADQT nhân có 4x 4A2 =...
Vậy...
d) tương tự câu a
 

 

8 tháng 6 2016

Ô tô đi với vận tốc 50km/giờ vì :

         100 : 2 = 50

                   đs : 50

29 tháng 10 2018

Số cách chọn : \(5\times6\times6\times6=1080\)(vì chỉ có 5 cách chọn số đứng đầu)

b) số cách lập số tự nhiên có 4 chữ số :

-Có 5 cách chọn chữ số làm số đầu (1;2;3;4;5) vì số 0 không đứng đầu được

-Có 5 cách chon số thứ hai vì đã chọn 1 số đứng đầu

-Có 4 cách chọn số thứ ba vì đã chọn hai số đầu 

-có 3 cách chon số thứ 4 vì chọn 3 số đầu

Suy ra có số cách chọn : \(5\times5\times4\times3=300\)

1 tháng 11 2017

Mong mọi người giúp mình

8 tháng 4 2018

a.Đặt A = {1, 2, 3, 4}

+ Gọi số có 1 chữ số là a

+ a có 4 cách chọn.

Vậy có 4 cách chọn số một chữ số.

b. Gọi số có 2 chữ số là ab

+ a có 4 cách chọn

+ b có 4 cách chọn

Vậy theo quy tắc nhân ta có: 4.4 = 16 (số)

c. Một số tự nhiên có hai chữ số khác nhau lập từ 4 chữ số trên có thể lập bằng cách chọn chữ số hàng chục: 4 cách.

Sau khi chọn chữ số hàng chục thì còn 3 cách chọn chữ số hàng đơn vị.

Vậy có 4.3 = 12 số tự nhiên có hai chữ số khác nhau được lập từ 4 chữ số trên.