Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số đó là \(\overline{abcd}\) ở đó a,b,c,d thuộc {1,2,5,7}
a, để số đó lớn hơn 4000 thì chữ số a phải bắt đầu bằng chữ số 5 hoặc 7.
vậy chữ số a có 2 cách chọn, chữ số b có 4 cách chọn
chữ số c có 4 cách chọn, d cũng có 4 cách chọn
suy ra có tất cả các chữ số ớn hơn 4000 là 2.4.4.4=128 số
b, để số đó lớn hơn 4000 thì chữ số a phải bắt đầu bằng 5 hoặc 7
mà các chữ số khác nhau
suy ra b có 3 cách chọn, c có 2 cách chọn và d có 1 cách chọn
số các chữ số cần tìm là: 2.3.2.1=12 số
Đáp án B
Phương pháp: Gọi số tự nhiên có ba chữ số cần tìm là a b c ( a ≠ 0 ) , tìm số cách chọn cho các chữ số a, b,c sau đó áp dụng quy tắc nhân.
Cách giải: Gọi số tự nhiên có ba chữ số cần tìm là a b c ( a ≠ 0 )
Có 4 cách chọn c.
Có 6 cách chọn a.
Có 7 cách chọn b.
Vậy có 4.6.7 = 168 số.
Chú ý và sai lầm: Các chữ số a, b, c không yêu cầu khác nhau
Xét hai tập hợp A={0;1;2;3;5;8} và B={0;1;2;5;8}.
● Xét số có bốn chữ số đôi một khác nhau với các chữ ố lấy từ tập A.
Gọi số cần tìm có dạng a b c d ¯ vì a b c d ¯ là số lẻ →d={1;3;5}
Khi đó, d có 3 cách chọn, a có 4 cách chọn, b có 4 cách chọn và c có 3 cách chọn.
Do đó, có 3.4.4.3=144 số thỏa mãn yêu cầu trên.
● Xét số có bốn chữ số đôi một khác nhau với các chữ số lấy từ tập B.
Gọi số cần tìm có dạng a b c d ¯ vì a b c d ¯ là số lẻ →d={1;5}
Khi đó, d có 2 cách chọn, a có 3 cách chọn, b có 3 cách chọn và c có 2 cách chọn.
Do đó, có 2.3.3.2=36 số thỏa mãn yêu cầu trên.
Vậy có tất cả 144-36=108 số cần tìm.
Chọn đáp án B.
Đáp án B
Số các số lẻ có 4 chữ số
Chữ số hàng đơn vị có 3 cách chọn, chữ số hàng nghìn có 4 cách chọn, chữ số hàng trăm và hàng chục có lần lượt 4 và 3 cách chọn
Do đó có: 3.4.4.3 = 144 số
Số các số lẻ có 4 chữ số và không có chữ số 3 là 3.4.3 = 36
Vậy có 144 − 36 = 108 số
Đáp án A
Goi A là số tự nhiên có hai chữ số lẻ khác nhau lấy từ các số 1, 2, 3, 4, 5, 6 số cách chọn được A là A 3 2 = 6. Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa A và ba trong 4 chữ số 0;2;4;6. Gọi a b c d ¯ ; a , b , c , d ∈ A , 0 , 2 , 4 , 6 là số thỏa mãn yêu cầu bài toán.
*TH1: Nếu d = 0 số cách lập là: 1. A 4 3 = 24
*TH2: Nếu d ≠ 0 thì d có 3 cách chọn, a có 3 cách chọn, b có 3 cách chọn, c có 2 cách chọn nên số cách lập là: 3.3.3.2 = 54
Số cách lập: 6 24 + 54 = 468.
Đáp án C
Trước tiên ta đếm số các số lẻ có bốn chữ số đôi một khác nhau lập được từ các số đã cho: có 3 cách chọn chữ số hàng đơn vị, có 4 cách chọn chữ số hàng nghìn, có A 4 2 = 6 . 2 cách chọn hai chữ số hàng trăm và hàng chục. Như vậy có 3.4.6.2=144 số như trên.
Tiếp theo ta đếm số các số lẻ có bốn chữ số đôi một khác nhau và không có mặt chữ số 1: Tương tự trường hợp trên, ta được số các số thuộc loại này là: 2.3.3=18.
Vậy số các số tự nhiên lẻ có bốn chữ số đôi một khác nhau mà phải có mặt số 1 là: 144 - 18 = 126
Đáp án B
Số có 5 chữ số khác nhau mà có 1, 2, 5 thì 2 chữ số còn lại lấy từ 4 chữ số 0, 3, 4, 6.
Lấy 2 số trong 4 số có C 4 2 = 6 cách, trong đó có 3 trường hợp gồm 0 ; 3 , 0 ; 4 , 0 ; 6 .
Ba trường hợp trên giống nhau và có 3.4.4.3.2.1=288 số.
Ba trường hợp còn lại giống nhau và có 3.5! = 360 số.
Vậy có tất cả 288 + 360 = 648 số cần tìm