Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Số cách chọn 3 số bất kì từ tập {4;5;6;7} là C 3 4
Do 1, 2, 3 luôn đứng cạnh nhau nên ta xem chúng như một phần tử.
Số các số tự nhiên có sáu chữ số đôi một khác nhau trong đó 1, 2, 3 luôn đứng cạnh nhau là 4!. C 3 4 .3! = 576 số.
Gọi số cần lập
Bước 1: Xếp chữ số 0 vào 1 trong 5 vị trí từ a2 đến a6, có 5 cách xếp.
Bước 2: Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn), có 5 cách xếp.
Bước 3: Chọn 4 chữ số trong 8 chữ số {2, 3, 4, 5, 6 , 7, 8, 9}để xếp vào 4 vị trí còn lại, có cách.
Theo quy tắc nhân có số thỏa yêu cầu.
Chọn D.
a. Gọi chữ số cần lập là \(\overline{abcd}\)
TH1: \(d=0\Rightarrow\) bộ abc có \(A_9^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (từ 2,4,6,8)
a có 8 cách chọn (khác 0 và d), b có 8 cách chọn (khác a và d), c có 7 cách chọn (khác a,b,d)
\(\Rightarrow4.8.8.7\) số
Tổng cộng: \(A_9^3+4.8.8.7=...\)
b. Chọn 4 chữ số còn lại: có \(C_7^4\) cách
Hoán vị 3 chữ số 0,1,2: có \(3!\) cách
Coi bộ 3 chữ số này là 1 số, hoán vị với 4 chữ số còn lại: \(5!\) cách
Ta đi tính số trường hợp 0 đứng đầu:
Số 0 đứng đầu trong bộ 0,1,2: có \(2!\) cách
Đặt bộ 0,1,2 đứng đầu, xếp vị trí cho 4 chữ số còn lại: \(4!\) cách
Vậy có: \(C_7^4.\left(3!.5!-2!.4!\right)=...\) số
Đáp án A
Xếp một hàng thành 6 ô đánh số từ 1 đển 6 như hình bên:
Số các chữ số gồm 6 chữ số khác nhau được lập từ 6 chữ số đã cho là 5.5! = 600 số.
Ta tìm số các số mà hai chữ số 0 và 5 đứng cạnh nhau:
• Chữ số 0 và 5 cạnh nhau tại ô số 1 và 2 có 1.4! = 24 số.
• Chữ số 0 và 5 đứng cạnh nhau tại các ô (2;3), (3;4), (4;5), (5;6) có 4.2!.4! = 192 số.
Vậy có tất cả 24 + 192 = 216 số mà chữ số 0 và 5 đứng cạnh nhau.
Do đó, số các số thỏa mãn yêu cầu bài toán là 600 – 216 = 384 số.
Đáp án B
Số các số lẻ có 4 chữ số
Chữ số hàng đơn vị có 3 cách chọn
chữ số hàng nghìn có 4 cách chọn
chữ số hàng trăm và hàng chục có lần lượt 4 và 3 cách chọn
Do đó có: 3.4.4.3 = 144 số
Số các số lẻ có 4 chữ số và không có chữ số 3 là
2.3.2.3 = 36
Vậy có 144 - 36 = 108 số
Đáp án B
Xét các số lẻ có 4 chữ số được lập từ các số trên có: 3.4.4.3 = 144 số
Xét các số lẻ có 4 chữ số được lập từ 4 số trên và không có mặt chữ số 3 có: 2.3.3.2 = 36 số
Do đó có 144 - 36 = 108 thỏa mãn.
Đáp án A
Gọi a 1 a 2 a 3 a 4 ¯ là số lẻ có 4 chữ số khác nhau, với a 1 , a 2 , a 3 , a 4 ∈ { 0 , 1 , 2 , 3 , 5 , 8 } => a4 có 3 cách chọn, a1 có 4 cách chọn, a2 có 4 cách chọn và a3 có 3 cách chọn. Khi đó, có 3.4.4.3 = 144 số thỏa mãn yêu cầu trên.
Gọi b 1 b 2 b 3 b 4 là số lẻ có 4 chữ số khác nhau, với b 1 , b 2 , b 3 , b 4 ∈ 0 ; 1 ; 2 ; 5 ; 8 => b4có 2 cách chọn, b1 có 3 cách chọn, b2 có 3 cách chọn và b3 có 2 cách chọn. Do đó, có 2.3.3.2 = 36 số thỏa mãn yêu cầu trên.
Vậy có tất cả 144 - 36 = 108 số thỏa mãn yêu cầu bài toán.
Chọn B.
? TH1: 1 nằm ở vị trí đầu
4 chữ số phía sau có: 7.6.5.4 =840 (cách)
? TH2: 1 không nằm ở đầu
Có 2 cách chọn vị trí cho số 1
Vị trí đầu có 6 cách
3 vị trí còn lại có 6.5.4 = 120 (cách)
Số các số thỏa là: 2.6.120 = 1440
Số cách chọn là: 840 + 1440 = 2280 (cách)
Gọi các số thỏa mãn đề là \(\overline{abcdef}\) (đôi một khác nhau)
- Số 7 có thể ở cả 6 vị trí.
+ Nếu a=7 => Số cách chọn các số còn lại: 9.8.7.6.5=15120 (cách)
+ Nếu a\(\ne\) 7 => Số cách chọn các số còn lại: 8.9.8.7.6.5=120960(cách)
=> Số số tự nhiên thỏa mãn: 15120+120960=136080(số)
Gọi chữ số cần lập là \(\overline{abcdef}\)
TH1: có mặt chữ số 0
Chọn 4 chữ số còn lại (ngoài 2 số 0 và 7): \(C_6^4=15\) cách
Hoán vị 6 chữ số: \(6!-5!=600\) cách
\(\Rightarrow15.600=9000\) số
TH2: không có mặt chữ số 0
Chọn 5 chữ số còn lại: \(C_6^5=6\) cách
Hoán vị 6 chữ số: \(6!=720\) cách
\(\Rightarrow6.720=4320\) số
Vậy có: \(9000+4320=13320\) số thỏa mãn