K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

Xếp số vào 8 ô trống thỏa yêu cầu đề bài.

Bước 1: Chọn 3 ô trong 8 ô để xếp 3 chữ số 1, có  cách.

Bước 2: Chọn 2 ô trong 5 ô còn lại để xếp 2 chữ số 4, có  cách.

Bước 3: Xếp 3 chữ số số còn lại vào 3 ô còn lại, có 3! cách.

Vậy có  số thỏa yêu cầu, nhưng có những số có chữ số 0 đứng vị trí đầu tiên.

Trường hợp số 0 ở ô thứ nhất.

Bước 1: Chọn 3 ô trong 7 ô còn lại, xếp 3 chữ số 1, có  cách.

Bước 2: Chọn 2 ô trong 4 ô còn lại, xếp 2 chữ số 4, có  cách.

Bước 3: Xếp hai chữ số còn lại vào 2 ô còn lại, có 2! cách.

Vậy có:  số mà chữ số 0 ở vị trí đầu tiên.

Kết luận có:  số thỏa yêu cầu.

Chọn C.

5 tháng 7 2018

Xếp số vào 9 ô trống thỏa yêu cầu đề bài:

Bước 1: Chọn 2 ô trong 8 ô (bỏ ô đầu tiên) để xếp hai chữ số 0, có  cách chọn.

Bước 2: Chọn 3 ô trong 7 ô còn lại để xếp ba chữ số 2, có  cách.

Bước 3: Chọn 2 ô trống trong 4 ô còn lại để xếp 2 chữ số 3, có  cách chọn.

Bước 4: Hai ô còn lại xếp 2 chữ số còn lại, có 2! Cách xếp.

Theo quy tắc nhân có: 

 số thỏa yêu cầu bài toán.

Chọn  B.

15 tháng 9 2019

29 tháng 12 2021

Có 2 số cố định là 2 và 5 thì ta có : 2!×6!=1440

19 tháng 7 2018

ta có : vì chữ số 4 có mặc 3 lần nên \(\Rightarrow\) bài toán tương đương với việc tìm số lượng của số có 7 chữ số được tạo bởi các con số : \(0,1,2,3,4,4,4\)

bước 1: tìm số lượng tất cả các số được tạo bởi bao gồm trường hợp chữ số 0 ở đầu .

ta có : số cách sắp xếp vị trí cho 3 chữ số 4 là : \(C^3_7=35\)

số cách sắp xếp vị trí cho 4 chữa số \(0,1,2,3\) là : \(P^4_4=4!=24\)

\(\Rightarrow\)\(35.24=840\) (số)

bước 2: tìm số lượng số có chữ số 0 ở đầu

ta có : số cách sắp xếp vị trí cho 3 chữ số 4 ở 6 vị trí còn lại là : \(C^3_6=20\)

số cách sắp xếp vị trí cho 3 chữa số \(1,2,3\) ở 3 vị trí còn lại là : \(P^3_3=3!=6\)

\(\Rightarrow\) có : \(20.6=120\) (số)

\(===\Rightarrow\) số lượng số cần tìm bằng : \(840-120=720\) (số)

20 tháng 11 2021

Số tự nhiên có 8 chữ số \(\overline{abcdefgh}\).

TH1: \(h=0\)

\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}=420\) cách lập.

\(\Rightarrow\) Lập được 420 số thỏa mãn yêu cầu.

TH2: \(h=5\)

\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}-\dfrac{6!}{2!.3!}=360\) cách lập.

\(\Rightarrow\) Lập được 360 số thỏa mãn yêu cầu.

Vậy lập được \(420+360=780\) số tự nhiên thỏa mãn yêu cầu bài toán.

20 tháng 11 2021

Bạn có thể giải thích phần công thức được không vậy. Mình hiểu hơi chậm. Bạn thông cảm. Mình cảm ơn nhiều.

26 tháng 2 2018

Đáp án C

Coi 9 chữ số của số được thành lập là 9 vị trí.

Chọn 4 vị trí trong 9 vị trí cho chữ số 4 có C 9 4  cách chọn.

Chọn 3 vị trí trong 5 vị trí còn lại cho chữ số 3 có C 5 3 .

Còn 2 vị trí còn lại cho chữ số 1 và 2 có 2 cách chọn.

Vậy số các số lập được là: 2. C 9 4 . C 5 3 = 2510

NV
19 tháng 12 2020

Số số thỏa mãn: \(\dfrac{9!}{5!}=3024\) số

(Đây là loại hoán vị lặp)

 

19 tháng 12 2020

Cảm bạn

25 tháng 10 2021

em hong thấy chữ với hình như cũng 0 đúng đề á :))

NV
25 tháng 10 2021

TH1: chữ số 0 có mặt 2 lần:

Có \(\dfrac{7!}{2!.2!.3!}-\dfrac{6!}{2!.3!}=150\) số

TH2: số 1 có mặt 2 lần:

Có \(\dfrac{7!}{2!.2!.3!}=210\) số

TH3: số 0 và số 1 mỗi số có mặt 1 lần:

\(\dfrac{7!}{1!.1!.2!.3!}-\dfrac{6!}{1!.2!.3!}=360\) số

Tổng cộng: \(150+210+360=720\) số

20 tháng 3 2021

Số chữ số tìm được là \(\dfrac{C^2_5\cdot5!}{3!}=200\)

Số số chia hết cho 3 là \(\dfrac{2\cdot5!}{3!}=40\)

\(\Rightarrow P=\dfrac{40}{200}=\dfrac{1}{5}\)