Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: IH vuông góc CD
AC vuông góc CD
DO đó: IH//AC
Xét ΔDCA có IH//AC
nên \(\dfrac{IH}{AC}=\dfrac{DH}{DC}\)
=>\(IH=\dfrac{AC\cdot DH}{DC}\)
Xét ΔACO vuông tại C và ΔBHD vuông tại H có
\(\widehat{AOC}=\widehat{BDH}\left(=\widehat{AOB}\right)\)
Do đó: ΔACO đồng dạng với ΔBHD
=>\(\dfrac{AC}{BH}=\dfrac{CO}{HD}\)
=>\(BH=\dfrac{AC\cdot HD}{CO}\)
\(\dfrac{BH}{IH}=\dfrac{DO}{OC}=2\)
=>BH=2IH
=>I là trung điểm của BH
a) Xét tứ giác OBAC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay O,B,A,C cùng thuộc 1 đường tròn(đpcm)
Từ điểm A ở ngoài đường tròn [O;R] vẽ hai tiếp tuyến AB;AC với đường tròn [B,C là tiếp điểm ]. Gọi H là chân đường vuông góc kẻ từ B đến đường kính CD.
a cm 4 điểm A,B,C,O cùng thuộc 1 đường tròn
b cm BD //OA
a: Xét (O) có
ΔCED nội tiếp
CD là đườngkính
=>ΔCED vuông tại E
Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
b: Xét ΔACD vuông tại C có CE là đường cao
nên AE*AD=AC^2
=>AE*AD=AH*AO
=>AE/AO=AH/AD
=>ΔAEH đồng dạng với ΔAOD
=>góc AHE=góc ADO