Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có I là trung điểm MN
=> OI vuông MN
Xét tứ giác ABOI có:\(\widehat{ABO}=90^o\)( vì AB là tiếp tuyến(O; R))
và \(\widehat{AIO}=90^o\)
=> \(\widehat{AIO}+\widehat{ABO}=180^o\)
=> Tứ giác ABOI nội tiếp (1)
Ta lại có: \(\widehat{ACO}=90^o\)( AC là tiếp tuyến (O;R))
Xét tứ giác ABOC có: \(\widehat{ABO}+\widehat{ACO}=180^o\)
=> Tứ giác ABOC nội tiếp (2)
Như vậy A,B, C, O, I cùng nằm trên môt đường tròn
b) AB=OB mà AB=AC; OB=OC
=> AB=AC=OB=OC
=> ABOC là hình thoi có \(\widehat{ABO}=90^o\)
=> ABOC là hình vuông
c) Áp dụng định lí piago cho tam giác ABO vuông tại B ta có:
\(AO^2=AB^2+BO^2=R^2+R^2=2R^2\Rightarrow AO=R\sqrt{2}\)
Gọi J là trung điểm AO khi đó các tam giác ABO vuông tại B, ACO vuông tại C đều nhận AO là cạnh huyền
=> JA=JB=JC=JO
=> J là tâm đường tròn ngoại tiếp ABOC
như vậy bán kính đường tròn ngoại tiếp ABOC bằng \(JA=\frac{1}{2}AO=\frac{R\sqrt{2}}{2}\)
Có bán kính rồi em tính diện tích và chu vi đi nhé!
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc ABO+góc ACO=90+90=180 độ
=>ABOC nội tiếp đường tròn đường kính OA
Tâm là trung điểm của OA
Bán kính là OA/2
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>AO vuông góc BC
c: Xét ΔAMB và ΔABN có
góc AMB=góc ABN
góc MAB chung
=>ΔAMB đồng dạng với ΔABN
=>AM/AB=AB/AN
=>AB^2=AM*AN=AH*AO
a: góc ABO+góc ACO=90+90=180 độ
=>ABOC nội tiếp
b: Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB/AN=AM/AB
=>AB^2=AN*AM
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>AH*AO=AB^2
Xét ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AB^2=AD*AE=AH*AO