K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

\(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}\)

\(=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)

\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}\)

\(=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)

20 tháng 11 2018

\(\frac{2x+y}{2x^2-xy}+\frac{8y}{y^2-4x^2}+\frac{2x-y}{2x^2+xy}\)

\(=\frac{2x+y}{x\left(2x-y\right)}-\frac{8y}{\left(2x-y\right)\left(2x+y\right)}+\frac{2x-y}{x\left(2x+y\right)}\)

\(=\frac{\left(2x+y\right)^2-8xy+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}=\frac{4x^2+4xy+y^2-8xy+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\frac{8x^2-8xy+2y^2}{x\left(2x-y\right)\left(2x+y\right)}=\frac{2\left(4x^2-4xy+y^2\right)}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\frac{2\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}=\frac{2\left(2x-y\right)}{x\left(2x+y\right)}\)

27 tháng 11 2018

\(\frac{5x^2+y^2}{xy}-\frac{3x-2y}{xy}\)

\(=\frac{5x^2+y^2-3x-2y}{xy}\)

Tham khảo nhé~

27 tháng 11 2018

\(\frac{y}{x\left(y-5x\right)}-\frac{15y-25x}{\left(y+5x\right)\cdot\left(y-5x\right)}\)

=\(\frac{y^2+5xy-15xy+25x^2}{x\left(y+5x\right)\left(y-5x\right)}\)

=\(\frac{y^2-10xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}=\frac{\left(y-5x\right)^2}{x\left(y-5x\right)\left(y+5x\right)}\)

=\(\frac{y-5x}{xy+5x^2}\)

28 tháng 2 2020

Với đk trên ta có:

P = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\left(\frac{x}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}-\frac{y}{x+y}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\left(\frac{x-y}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\frac{x-y}{xy}.\left(xy-\left(x+y\right)^2\right).\frac{1}{x^2+xy+y^2}\)

\(=\frac{2}{x}+\frac{x-y}{xy}\)

\(=\frac{x+y}{xy}\)

25 tháng 6 2017

\(=\frac{y}{xy^2-x^2y}-\frac{x}{xy^2-x^2y}\)

\(=\frac{y-x}{xy\left(y-x\right)}\)

\(=\frac{1}{xy}\)

17 tháng 12 2019

\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\left(\frac{y-x}{xy}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\frac{\left(x-y\right)^2}{x^2y^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2x^2y^2}{xy\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2xy}{\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}=\frac{-x^2+2xy-y^2}{\left(x-y\right)^2}\)

\(=-\frac{\left(x-y\right)^2}{\left(x-y\right)^2}=-1\)