K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

25 tháng 11 2020

- Giả sử tam giác ABC vuông tại A . Theo bài ra , ta có :

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\left(1\right)\)

- Áp dụng đlí Py - ta - go cho tam giác vuông ABC ( \(\widehat{A}=90^o\)

Ta có : \(BC^2=AB^2+AC^2\)

           \(\Leftrightarrow125^2=\left(\frac{3}{4}AC\right)^2+AC^2\)

           \(\Leftrightarrow15625=\frac{9}{16}AC^2+AC^2\)

           \(\Leftrightarrow15625=\left(\frac{9}{16}+1\right)AC^2\)

            \(\Leftrightarrow\frac{25}{16}AC^2=15625\)

            \(\Leftrightarrow AC^2=\frac{15625.16}{25}\)

           \(\Leftrightarrow AC=\sqrt{\frac{15625.16}{25}}=\frac{125.4}{5}=100\left(cm\right)\)

Thay AC = 100cm vào (1) , ta được :

\(AB=\frac{3}{4}.100=75\left(cm\right)\)

- Áp dụng hệ thức lượng trong tam giác ABC ( \(\widehat{A}=90^o\)) đường cao AH , ta có :

\(AB^2=BH.BC\)

\(\Leftrightarrow BH=\frac{AB^2}{BC}=\frac{75^2}{125}=45\left(cm\right)\)

Ta lại có : BC = BH + HC

                125 = 45 + HC

                HC = 125 - 45 = 80 ( cm )

Vậy : AB = 75 cm

         AC = 100 cm

         HC = 80 cm

         BH = 45 cm

3 tháng 12 2016

Một số cách chứng minh định lí Pitago Cách 1: Chứng minh của E. A. CoolidgeCách chứng minh này xuất hiện trong cuốn sách về các vấn đề kinh điển thuộc học thuyết Pitago của tác giả Elisha Scott Loomis, được xuất bản lần đầu tiên bởi Hội đồng giáo viên quốc gia của môn toán học, vào năm 1927. Thật đáng tiếc, quyển sách này hiện nay không được xuất bản nữa, trong cuốn sách này có tới trên 300 cách chứng minh định lý Pitago, trong đó, có nhiều cách chứng minh tương tự nhau, và tất cả các cách chứng minh nổi tiếng đều có trong cuốn sách của Loomis.Cách chứng minh dưới đây thì tương tự như cách chứng minh của Bhaskara trong phần “Behold!” đã giới thiệu ở bài trước. Cách chứng minh này được đăng trên tạp trí giáo dục, xuất bản hàng ngày, và tác giả của nó là cô E. A. Coolidge - là một người mù.Dựng hình và kiểm tra1. Vẽ một tam giác vuông và các hình vuông trên các cạnh của nó (dùng công cụ custom)2. Kéo dài tia HA, lấy điểm A’ đối xứng với điểm H qua A bằng cách :+ Chọn đoạn HA và điểm A+ Chọn menu Transform --> Rotate --> degrees =1803. Vẽ một đường thẳng đi qua điểm B và vuông góc với đoạn AA’, Vẽ điểm giao K của 2 đường này.( Hình bên minh họa cho các bước từ 1 đến 3)4. Vẽ hình vuông A’KLM.(Sử dụng công cụ Custom tool như đã giới thiệu ở bài 1)5. Vẽ Đoạn BK, GM, FL.6. Làm ẩn đi đường BK.7. Tô màu cho 4 mảnh trong hình vuông trên cạnh huyền.8. Đánh dấu vectơ EJ và dịch chuyển 4 đỉnh và 4 cạnh của hình vuông BCDE theo vectơ này (để được hình vuông bên dưới hình vuông trên cạnh b có diện tích bằng diện tích hình vuông BCDE )+ Đánh dấu theo thứ tự điểm E, J+ Chọn menu Transform --> Mark vector+ Đánh dấu 4 cạnh và 4 đỉnh của hình vuông BCDE+ Chọn vào Menu Transform --> Translate

Xem nội dung đầy đủ tại:http://123doc.org/document/542584-mot-so-cach-chung-minh-dinh-ly-pitago.htm

3 tháng 12 2016

Có 6 cách nè:
Cách 1+cách 2:có trong SGK toán 7(PP diện tích)
Cách 3:(của một Tổng thống Mỹ hẳn hoi,ko biết có đúng ko)
Cho 2 tam giác vuông ABC và A'BC' (góc A= góc A' =90 độ)đặt cạnh nhau sao cho có được hình thang vuông ACC'A'(AC song song A'C') rồi dùng Đại số là ra
Cách 4:(của một nhà toán học Ấn Độ)
Dựng hình vuông ABCD và các tam giác vuông MAB,NBC,PCD,QDA để được hình vuông MNPQ rồi lại Đại số là ra
Cách 5:(thuần túy Hình học)Với ABC(góc A=90 độ) dựng ra ngoài 3 hình vuông ABDE,ACGH và BCM rồi dùng tam giác bằng nhau
Cách 6:Sử dụng hệ thức lượng trong tam giác vuông(lớp 9) 

5 tháng 6 2019

tham khảo nhé . 

 gọi K là giao điểm của ED và BC , vẽ DM vuông góc với AH ở M. 
Ta có DM // BC ( tự cm ) => MD /CH = AD / AC = AM / AH = 1 / 3 ( do AD = 1/3 AC ) 
=> MD = CH/3 ( * ) và AM = AH/3 = EH ( do EH = AH/3 ) 
ta có AM = EH /3 => AM = MH / 2 = EH => EH = EM / 3
ta lại có HK / MD = EH / EM = 1/ 3 ( ** ) 
từ ( *) và ( ** ) ta có HK = CH / 9 . 
ta có AH^2 = BH.CH = 9 (EH^2) = BH.9HK 
=> EH^2 = BH.HK => tam giác BEK vuông ở E mà D thuộc EK nên BÊD = 90. 

14 tháng 10 2022

*Kẻ DM ⊥ AH ( M ∈ AH )
 Xét △AHC có : MD // BC 
=> AM/AH = AD/AC ( Ta-lét)
=> AM/AH=HE/AH ( = AD/AC = 1/3 )
=> AM = HE
 Ta có : AH + HE - AM = MH => AH = MH
 Xét △EMD ( góc EMD = 90 ) 
=> ME^2 + MD^2 = DE^2 ( Pytago )                             (1)
Tương tự với các : +△BHE => BE^2 = BH^2 + HE^2   (2)
                              +△ABH => BH^2 = AB^2 - AH^2
                              +△AMD => MD^2 = AD^2 - AM^2
                              +△ABD => BD^2 = AB^2 + AD^2
Cộng (1) với (2), ta đc : 
   DE^2 + BE^2 = ME^2 + MD^2 + BH^2 - HE^2
<=> DE^2 + BE^2 = AH^2 + AD^2 - AM^2 + AB^2- AH^2 + AM^2
<=> DE^2 + BE^2 = AD^2 + AB^2
=> DE^2 + BE^2 = BD^2
=> △BDE vuông tại E ( Pytago đảo )
=> góc BED = 90 -> đcpcm
( Có thể có sai sót lúc làm mong đóng góp ) =))

17 tháng 10 2019

Giải bài tập Toán 9 | Giải Toán lớp 9

Ta có: ∠P + ∠Q = 90o ⇒ ∠ Q = 90o - 36o= 54o

Xét tam giác OPQ vuông tại O

OP = PQ.cosP = 7.cos 36o ≈ 5,66

OQ = PQ.cosQ = 7.cos 54o ≈ 4,11

30 tháng 1 2017

Giải bài tập Toán 9 | Giải Toán lớp 9

Ta có: