Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Xét các tỉ số :
+ A B i 1 = 6 , 72 0 , 48 = 14 → trên đoạn AB có 15 vị trí cho vân sáng của bức xạ λ 1
+ A B i 2 = 6 , 72 0 , 64 = 10 , 5 → trên đoạn AB có 11 vị trí cho vân sáng của bức xạ λ 2
→ Điều kiện trùng nhau của hai hệ vân sáng: k 1 k 2 = i 2 i 1 = 4 3
Vì việc lặp lại có tính tuần hoàn của hệ vân nên nếu ta xem tại A là vân trung tâm thì tại B là vân sáng bậc 13 của bức xạ λ 1 và vân tối bậc 10 của bức xạ λ 2
Trên đoạn này có 4 vị trí trùng nhau của hai bức xạ ứng với k 1 = 0, 4, 8, 12
Vậy số vân sáng quan sát được là 15 + 11 – 4 = 22.
Ta có: \(i_1=3,5/7=0,5mm\)
\(i_2=7,2/8=0,9mm\)
Vân sáng: \(i=\dfrac{\lambda D}{a}\)
Suy ra: \(\dfrac{i_1}{i_2}=\dfrac{\lambda_1}{\lambda_2}\Rightarrow \lambda_2=\lambda_1.\dfrac{i_2}{i_1}=420.\dfrac{0,9}{0,5}=756nm\)
Khoảng cách giữa 2 vân sáng gần nhau nhất cùng màu với vân trung tâm: \(x_T=k_1i_1=k_2i_2\)(1)
\(\Rightarrow k_1\lambda_1=k_2\lambda_2\Rightarrow\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{0,6}{0,48}=\frac{5}{4}\)
\(\Rightarrow\begin{cases}k_1=5\\k_2=4\end{cases}\)
Thay vào (1) \(x_T=5i_1=4i_2\)
Như vậy tại vị trí 2 vân trùng nhau kể từ vân trung tâm có vân bậc 5 của \(\lambda_1\) và bậc 4 của \(\lambda_2\)
Do đó, giữa 2 vân sáng cùng màu vân trung tâm có: 4 vân sáng λ1 và 3 vân sáng λ2.
Đáp án A.
o 1,2 1,2,3 x T
Khoảng cách giữa 2 vân gần nhất có màu giống vân trung tâm là \(x_{\equiv}\)
\(\Rightarrow x_{\equiv}=k_1i_1=k_2i_2=k_3i_3\)\(\Rightarrow k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)(1)
Ta có: \(\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{5}{4}\)
Vì trong khoảng giữa hai vân sáng gần nhau nhất cùng màu với vân trung tâm chỉ có một vị trí trùng nhau của các vân sáng ứng với hai bức xạ λ1, λ2 nên: \(\begin{cases}k_1=5.2=10\\k_2=4.2=8\end{cases}\)
Thay vào (1) ta có: \(10\lambda_1=8\lambda_2=k_3\lambda_3\)
λ3 có màu đỏ nên λ1 > λ2
\(\Rightarrow k_3<8\)
\(\Rightarrow k_3=7;5;3\)
+ \(k_3=7\Rightarrow\lambda_3=\frac{8}{7}\lambda_2=\frac{8}{7}.0,5=0,57\)
+ \(k_3=5\Rightarrow\lambda_3=\frac{8}{5}\lambda_2=\frac{8}{5}.0,5=0,8\)loại, vì ngoài bức xạ màu đỏ.
Vậy \(\lambda_3=0,57\mu m\), không có đáp án nào thỏa mãn :))
Ý này của bạn bị nhầm λ3 có màu đỏ nên λ1 > λ2
Sửa lại là: Vì \(\lambda_3\) có màu đỏ nên \(\lambda_3>\lambda_2\)
Bạn tham khảo một bài hoàn toàn tương tự như vậy nhé
Câu hỏi của trần thị phương thảo - Học và thi online với HOC24
+ Ban đầu M là vân tối thứ 3 nên: \(x_M=\left(2+\frac{1}{2}\right)\frac{\lambda D}{a}\left(1\right)\)
+ Khi giãm S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc n nên: \(x_M=n\frac{\lambda D}{a-\Delta a}\left(2\right)\)
+ Khi tăng S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc 3n nên: \(x_M=3n\frac{\lambda D}{a+\Delta a}\left(3\right)\)
+ (2) và (3) \(\Rightarrow k\frac{\lambda D}{a-\Delta a}=3k\frac{\lambda d}{a+\Delta a}\Rightarrow\Delta a=\frac{a}{2}\)
+ Khi tăng S1S2 một lượng 2\(\Delta\)a thì M là sáng bậc k nên: \(x_M=k\frac{\lambda D}{a+2\Delta a}=2,5\frac{\lambda D}{a}\left(4\right)\)
+ Từ (1) và (4) \(\Rightarrow\) k = 5. Vậy tại M lúc này là vân sáng bậc 5.
\(i = \frac{\lambda D}{a} =\frac{0,5. 1}{0,5}=1mm.\)
Số vân sáng trên trường giao thoa L là
\(N_s = 2.[\frac{L}{2i}]+1= 2.2.6+1 = 13.\)
Số vân tối trên trường giao thoa L là
\(N_t = 2.[\frac{L}{2i}+0,5]= 2.7 = 14.\)
Khoảng cách giữa hai vân sáng cùng màu gần nhất với vân chính giữa là : x = k1 i1 = k2 i2 => k1λ1 = k2λ2
Nhận xét: k2 = 9 => k1.720 = 9 λ2 => λ2 = 80 k1.
Do λ2 có giá trị trong khoảng từ 500nm đến 575nm nên dễ thấy k1 = 7
=> λ2 = 560 nm.
Đáp án D
\(i_1 = \frac{\lambda_1 D}{a}\\ i_2 = \frac{\lambda_2 D}{a}\)=> \( \frac{i_1}{i_2}= \frac{\lambda _1}{\lambda_2}= \frac{540}{600}=0,9.\)
=> \(i_2 = \frac{i_1}{0,9}=0,4 mm.\)