Trong thí nghiệm Y-âng về giao thoa ánh sáng, khoảng cách giữa hai khe a = 2mm, khoảng cách t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2018

Đáp án B

Cách 1:

Dùng chức năng lập bảng của máy tính (MODE7 TABLE)

      + Tìm hàm biến này theo biến kia k2 theo biến k1 qua điều kiện trùng nhau:

Bấm = nhập giá trị của k1 theo phương trình (2)

                             Start? Nhập 3

                             End? Nhập 19

                             Step? Nhập 1 (vì giá trị k1, k2 nguyên)

Bấm = ta được bảng giá trị k1,k2 ta lấy các cặp giá trị nguyên.

STT

x   =   k 1  

( f x )   =   k 2  

1

 

6

7

 

10

12

 

14

17

 

18

22

 

 

 

O
ongtho
Giáo viên
23 tháng 1 2016

Đổi đơn vị: \(\lambda_1=450n m= 0,45 \mu m.\)

                    \(\lambda_1=600n m= 0,6 \mu m.\)

Hai vân sáng trùng nhau khi \(k_1i_1=k_2i_2 \)

<=> \(\frac{k_1}{k_2}= \frac{i_1}{i_2}=>\frac{k_1}{k_2}= \frac{\lambda_1}{\lambda_2} =\frac{3}{4}\ \ (*)\)

Xét trong đoạn MN nên \(5,5 mm \leq x_s \leq 22mm. \)

                               <=> \(5,5 mm \leq k_1\frac{\lambda_1 D}{a} \leq 22mm. \)

                               <=> \(\frac{5,5.a}{\lambda_1 D} \leq k_1\leq \frac{22.a}{\lambda_1 D}\)

Giữ nguyên đơn vị của a = 0,5 mm; D = 2m; \(\lambda_1=0,45 \mu m.\)

                             <=> \(3,055 \leq k_1 \leq 12,22\) 

Kết hợp với (*) ta có \(k_1\) chỉ có thể nhận giá trị : 3x2= 6; 3x3 = 9; 3x4 =12.

Như vậy có 3 vị trí trùng nhau của hai bức xạ trong đoạn MN.

                          

                           

 

12 tháng 6 2016

\(i_1=\dfrac{\lambda_1.D}{a}=1,2mm\)

Số vân sáng  của i1 là: \(|\dfrac{24}{2.1,2}|.2+1=21\)

Số vân sáng của i2 là: \(33+5-21=17\)

\(\Rightarrow i_1=1,5mm\)

\(\Rightarrow \lambda_2=0,75\mu m\)

24 tháng 1 2019

Có thể làm rõ hơn ko ạ???

1 tháng 2 2016

\(x_1=k_1\frac{\text{λ}_1D}{a}\)

\(x_2=k_2\frac{\text{λ}_2D}{a}\)

vân sáng của hai bức xạ bằng nhau \(\Leftrightarrow x_1=x_2\)

\(\Rightarrow\frac{k_1}{k_2}=\frac{\text{λ}_1}{\text{λ}_2}\Rightarrow\text{λ}_2=\frac{k_1\text{λ}_1}{k_2}=\frac{2.0,603}{3}=\text{0,402μm}\)

 

----> chọn A

4 tháng 2 2016

a

22 tháng 1 2015

Tại điểm M  là vân sáng nên \(x_M=ki=k\frac{\lambda D}{a}\)

\(\lambda=\frac{x_Ma}{kD}=\frac{4,2.0,5}{k.1,4}=\frac{1,5}{k}\)

Theo giả thiết: \(0,38\le\lambda\le0,76\)

\(\Rightarrow0,38\le\frac{1,5}{k}\le0,76\)

\(\Rightarrow1,97\le k\le3,94\)

k nguyên nên k = 2,3.

Như vậy, tại M có 2 bước sóng cho vân sáng, đáp án là A.

3 tháng 2 2016

Khoảng vân ứng với bước sóng \(\lambda\) là:

\(i=\lambda\frac{D}{d}=k\lambda\)  (với \(k=\frac{D}{d}\))

Vân sáng trung tâm là cực đại chung của cả 3 bước sóng.
Cực đại chung gần nhất ứng với khoảng cách là bội chung nhỏ nhất của 3 khoảng vân.

Để đơn giản, ta tìm bội chung nhỏ nhất của 42, 56, 63. Mình sẽ hướng dẫn luôn.
Trước hết phân tích thành tích các số nguyên tố: 

\(\text{42=7×2×3 }\)

\(56=7\text{×}2^3\)

\(63=7\text{×}3^2\)

Bội chung nhỏ nhất là: \(7\text{×}2^3\text{×}3^2=504\)  

Vậy khoảng giữa 2 vân sáng liên tiếp có màu giống màu vân trung tâm là:\(d=5,04k\left(m\right)\)

Bội chung nhỏ nhất giữa 42 và 56 là: \(\text{7×}2^3\text{×}3=168\)

Suy ra trong khoảng \(d\) có 2 vân sáng là : \(\lambda_1\) và \(\lambda_2\) trùng nhau

Bội chung nhỏ nhất giữa 42 và 63 là: \(7\text{×}2\text{×}3^2=126\)

Suy ra trong khoảng \(d\)có 3 vân sáng là \(\lambda_1\) và \(\lambda_3\) trùng nhau.

Bội chung nhỏ nhất giữa 56 và 63 là: \(7\text{×}2^3\text{×}3^2=504\)

Suy ra trong khoảng \(d\) có 0 vân sáng là \(\lambda_2\) và \(\lambda_3\) trùng nhau.

Vậy tổng số vân sáng bên trong khoảng d là:

\(\frac{d}{i_1}-1+\frac{d}{i_2}-1+\frac{d}{i_3}-1-2-3-0\)

\(=\frac{504}{42}-1+\frac{504}{56}-1+\frac{504}{63}-1-2-3-0\)

\(=21\) (vân sáng )

 

----> chọn A

3 tháng 2 2016

ta có: 

\(i_1:i_2:i_3=\lambda_1:\lambda_2:\lambda_3=6:8:9\)

Bội chung nhỏ nhất là 72

Như vậy vân 12 của bức xạ 1 trùng với 9 của bx2 và 8 của bx3 

trong khoảng này thì bx2 và và bx3 không trùng cực đại vì 8 và 9 nguyên tố cùng nhau

cực đại số 4 và số 8 của bx1 trùng với cực đại số 3 và 6 của bx2

cực đại số 3 ,6 và số 9 của bx1 trùng với cực đại số 2;  4và  6 của bx2 

Số cực đại nhìn thấy là

11+8+7-2-3=21 

 

\(\rightarrow chọn.A\)

O
ongtho
Giáo viên
23 tháng 1 2016

Tại vị trí cách vân trung tâm 3 mm có vân sáng bậc \(k\) của bức xạ \(\lambda\) khi 

\(x=3mm = ki =k\frac{\lambda D}{a}.\)

=> \(\lambda = \frac{3.a}{D k}.(1)\)

Mặt khác : \(0,38 \mu m \leq \lambda \leq 0,76 \mu m.\)

<=> \(0,38 \mu m \leq \frac{3a}{kD} \leq 0,76 \mu m.\)

<=> \(\frac{3.0,8}{0,76.2} \leq k \leq \frac{3.0,8}{0,38.2} \)

Giữ nguyên đơn vị của \(x = 3mm; a = 0,8mm;\lambda = 0,76 \mu m;0,38 \mu m; D= 2m\)

<=> \(1,57 \leq k \leq 3,15.\)

<=> \(k = 2,3.\)

Thay vào (1) ta thu được hai bước sóng là \(\lambda_1 = \frac{3.0,8}{2.2}=0,6\mu m.\)

                                                                    \(\lambda_2 = \frac{3.0,8}{3.2}=0,4\mu m.\)

                                   

 

6 tháng 6 2017

Đáp án A

Bước sóng của bức xạ A:

Đề kiểm tra 45 phút Vật Lí 12 Học kì 2 có đáp án (Đề 2)

Đề kiểm tra 45 phút Vật Lí 12 Học kì 2 có đáp án (Đề 2)

Hai bức xạ trùng nhau:

Đề kiểm tra 45 phút Vật Lí 12 Học kì 2 có đáp án (Đề 2)

Do:

Đề kiểm tra 45 phút Vật Lí 12 Học kì 2 có đáp án (Đề 2)

Khi k = 1 thì λ' = 1,2μm, không có đáp án phù hợp.

Khi k = 2 thì λ' = 0,6μm, đáp án A phù hợp.

4 tháng 6 2016
+ Khoảng vân: \(i=\frac{\lambda D}{a}=1,8\left(mm\right)\)
+ Xét tỉ số: \(\frac{x_M}{i}=3\) 
\(\Rightarrow\) Tại M là vân sáng bậc 3.
4 tháng 6 2016

 

Trong thí nghiệm Iâng về giao thoa ánh sáng, hai khe hẹp cách nhau một khoảng 0,5 mm, khoảng cách từ mặt phẳng chứa hai khe đến màn quan sát là 1,5 m. Hai khe được chiếu bằng bức xạ có bước sóng 0,6 μmμm. Trên màn thu được hình ảnh giao thoa. Tại điểm M trên màn cách vân sáng trung tâm một khoảng 5,4 mm có 

 

A.  vân sáng bậc 2

B. vân sáng bậc 4

C. vân sáng bậc 3 

D. vân sáng thứ 4

31 tháng 5 2019

Chọn D.

Với bức xạ λ vị trí vân sáng bậc k = 3, ta có x k = k λD a . Với bức xạ λ' vị trí vân sáng bậc k', ta có x k ' = k ' λ ' D a . Hai vân sáng này trùng nhau ta suy ra xk = xk’ tương đương với kλ = k’λ’ tính được λ’ = 0,6μm