Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tiền điện và số tiền nước trong tháng 3 lần lượt là a,b
Trong tháng3 phải trả 1075000 nên a+b=1075000
Theo đề, ta có hệ:
a+b=1075000 và 1,1a+1,12b=1187500
=>a=825000 và b=250000
gọi số tiền phải đóng trong tháng 2 là x (đ) (0<x<1400000)
số tiền đóng trong tháng 3 là 1400000-x ( đ)
theo bài ra ta có pt
x- 15%x+ 1400000- x - 25% (1400000-x)= 1400000-270000
tớ chỉ giúp cậu tới đây đc thôi, cậu giải thử cái pt này chắc là ra đấy
#mã mã#
Lời giải:
Gọi số tiền điện phải đóng trong tháng 2 và 3 lần lượt là $a$ và $b$. Theo bài ra ta có:
\(\left\{\begin{matrix} a+b=1400000\\ 0,15a=270000\end{matrix}\right.\) . Hệ này giải ra $b$ âm. Vô lý nên bạn coi lại đề.
khi X = 100 ( phút ) thì Y = 40 ( nghìn đồng )
\(\Rightarrow\)\(40=a\times100+b\)
khi X = 40 ( phút ) thì Y = 28 ( nghìn đồng )
\(\Rightarrow28=a\times40+b\)
Hệ phương trình có tập nghiệm là
\(a=\frac{1}{5}=0,2\)
\(b=20\)
Trả lời:
Trong tháng 5 bạn Nam gọi 100 phút hết 40 nghìn, thay vào phương trình y=ax+b, ta có:
40= 100a+b <=> 100a+b= 40 (1)
Tháng 6 bạn Nam gọi 40 phút hết 28 nghìn đồng, ta có:
28= 40a+b <=> 40a+b=28 (2)
lấ (1)-(2) vế theo vế=> 60a=12
=> a= 1/5
thay a=1/5 vào PT (1)
=> b=20
Vậy ta có y=\(\frac{1}{5}\)x+20
a: Theo đề, ta có hệ phương trình:
200a+b=80000 và 80a+b=56000
=>a=200 và b=40000
=>y=200x+40000
Đặt y=100000
=>200x=600000
=>x=300
b: \(\Leftrightarrow\left\{{}\begin{matrix}x=m-\left(m-1\right)y\\\left(m-1\right)\left[m-\left(m-1\right)y\right]+y=3m-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m-\left(m-1\right)y\\m\left(m-1\right)-y\left(m-1\right)^2+y=3m-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(1-m^2+2m-1\right)=m^2-m-3m+4\\x=m-\left(m-1\right)y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-m^2+2m\right)=\left(m-2\right)^2\\x=m-\left(m-1\right)y\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thì -m^2+2m<>0
=>m<>0 và m<>2
Khi đó, ta có; \(\left\{{}\begin{matrix}y=\dfrac{\left(m-2\right)^2}{-m\left(m-2\right)}=\dfrac{-m+2}{m}\\x=m+\dfrac{\left(m-1\right)\left(m-2\right)}{m}=\dfrac{2m^2-3m+2}{m}\end{matrix}\right.\)
x+y=3
=>\(\dfrac{2m^2-3m+2-m+2}{m}=3\)
=>2m^2-4m+4=3m
=>2m^2-7m+4=0
=>\(m=\dfrac{7\pm\sqrt{17}}{4}\)
Số tiền trả góp trong 6 tháng là
\(2.100.000\cdot6=12600000\left(VNĐ\right)\)
Chiếc xe đạp điện là
\(12600000:30\%=42000000\left(VNĐ\right)\)
Đáp sô 42000000 VNĐ
Đây là câu 21 của đề minh họa thị THPT QG 2017.
Lãi suất 12%/năm => lãi suất 1%/tháng.
Nếu còn nợ a đồng thì phải trả lãi 0,01 a cho 1 tháng.
Sau tháng đầu tiên, sau khi trả m đồng thì ông A còn nợ là:
(a + 0,01.a) - m = a. 1,01 - m
Sau tháng thứ hai, sau khi trả tiếp m đồng thì ông A còn nợ là:
(a . 1,01 - m) . 1,01 - m
Sau tháng thứ ba, sau khi trả tiếp m đồng thì ông A còn nợ là:
[(a. 1,01 - m) . 1,01 - m] . 1,01 - m
Con số nợ cuối cùng này phải bằng 0, suy ra:
[(a. 1,01 - m) . 1,01 - m] . 1,01 - m = 0
=> \(m=\frac{a.1,01^3}{1,01^2+1,01+1}=\frac{a.1,01^3\left(1,01-1\right)}{1,01^3-1}=\frac{a.1,01^3.0,01}{1,01^3-1}\)
Thay a = 100 vào ta có:
\(m=\frac{1,01^3}{1,01^3-1}\)
Ta có: \(y=ax+b_{\left(1\right)}\)
Trong tháng 5: x = 100 phút; y = 40 000 đồng \(\left(1\right)\Rightarrow40000=100a+b_{\left(2\right)}\)
Trong tháng 6: x = 40 phút; y = 28 000 đồng \(\left(1\right)\Rightarrow28000=40a+b_{\left(3\right)}\)
Từ (2) và (3), ta có hpt: \(\left\{{}\begin{matrix}40000=100a+b\\28000=40a+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=200\\b=20000\end{matrix}\right.\)
Vậy .............
Gọi số tiền điện và số tiền nước tháng 3 phải trả lần lượt là x,y
Theo đề, ta có hệ phương trình:
x+y=600000 và 0,85x+1,05y=534000
=>x=480000 và y=120000