Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Vì d 1 không song song hoặc trùng với d 2 nên không tồn tại phép tịnh tiến nào biến d 1 thành d 2 .
Lời giải:
Phép tịnh tiến qua vecto $v$ biến $(d_3)$ thành chính nó thì $\overrightarrow{v}$ vecto chỉ phương của $(d_3)$
$\Rightarrow \overrightarrow{v}=(a,0)$
$T_{\overrightarrow{v}}(d_1)=d_2$
\(\Rightarrow \left\{\begin{matrix} 2x-y+2=0\\ 2(x+a)-y+1=0\end{matrix}\right.\Rightarrow a=\frac{1}{2}\)
Vậy $\overrightarrow{v}=(\frac{1}{2}, 0)$
\(d_2\) vuông góc \(d_1\) nên nhận (1;2) là 1 vtpt
d' là ảnh của \(d_2\) qua phép tịnh tiến \(\Rightarrow d'\) cùng phương \(d_2\Rightarrow d'\) cũng nhận (1;2) là 1 vtpt, pt d' có dạng:
\(x+2y+c=0\) (1)
Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in d'\)
\(\left\{{}\begin{matrix}x'=-1+4=3\\y'=2+\left(-3\right)=-1\end{matrix}\right.\) \(\Rightarrow A'\left(3;-1\right)\)
Thế vào (1):
\(3+2.\left(-1\right)+c=0\Rightarrow c=-1\)
Vậy pt d' là: \(x+2y-1=0\)
Gọi vecto tịnh tiến có dạng \(\overrightarrow{v}=\left(a;0\right)\)
\(M\left(0;-1\right)\) là 1 điểm thuộc d
M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)
\(\left\{{}\begin{matrix}x_{M'}=0+a=a\\y_{M'}=-1+0=-1\end{matrix}\right.\) \(\Rightarrow M'\left(a;-1\right)\)
Thay vào pt d':
\(a-1-1=0\Leftrightarrow a=2\)
Vậy \(\overrightarrow{v}=\left(2;0\right)\)
thầy ơi cho em hỏi vì sao vecto v lại biết đc số 0 là y v thầy
* Xét (d1): Cho x=1 thì y= 6 => y(d2) sau tịnh tiến = 3 => x(d2) = 2
=> Phép tịnh tiến theo vectơ u =( m ; -3) biên đg thẳng d1 thành d2 thì:
1+ m = 2 => m=1
Phép tịnh tiến theo vecto u → ( 0 ; - 1 ) biến đường thẳng y = x thành đường thẳng y = x - 1;
Phép đối xứng trục Oy biến đường thẳng y = x - 1 thành đường thẳng y = -x - 1 hay x + y + 1 = 0
Đáp án A