K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Phương trình hoành độ giao điểm là:

\(x^2-kx+k-2=0\)

\(\text{Δ}=\left(-k\right)^2-4\left(k-2\right)\)

\(=k^2-4k+8=\left(k-2\right)^2+4>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

2: Theo đề, ta có; \(x_1^2+x_2^2+x_1^2+x_2^2=14\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\)

\(\Leftrightarrow k^2-2\left(k-2\right)=7\)

\(\Leftrightarrow k^2-2k-3=0\)

=>(k-3)(k+1)=0

=>k=3 hoặc k=-1

25 tháng 5 2021

A, B thuộc (P), (d) ?

Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=k\left(x-1\right)+2\Leftrightarrow x^2-kx+\left(k-2\right)=0\).

Ta có \(\Delta=k^2-4\left(k-2\right)=\left(k-2\right)^2+2>0\forall k\) nên phương trình trên luôn có hai nghiệm phân biệt.

Theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1x_2=k-2\\x_1+x_2=k\end{matrix}\right.\).

Ta có \(x_1^2+y_1+x_2^2+y_2=14\)

\(\Leftrightarrow2x_1^2+2x_2^2=14\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\)

\(\Leftrightarrow k^2-2\left(k-2\right)=7\Leftrightarrow k^2-2k-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}k=-1\\k=3\end{matrix}\right.\).

Vậy...

 

27 tháng 6 2020

Bài 2 hình như sai đề thì phải

27 tháng 6 2020

Hoành độ giao điểm là nghiệm của phương trình: 

x^2 = 2x - n + 3 

<=> x^2 - 2x + n - 3 = 0  (1)

có: \(\Delta'=1^2-\left(n-3\right)=4-n\)

(P) cắt (d) <=> (1) có nghiệm <=> \(\Delta'\ge0\Leftrightarrow n\le4\)(@)

Áp dụng định lí viet ta có: x1 . x2 = n - 2 (2) ; x1 + x2 = 2(3)

Theo bài ra ta có: \(x_1^2-2x_2+x_1x_2=16\)

<=> \(2x_1-n+3-2x_2+x_1x_2=16\)

<=> \(2x_1-n+3-2x_2+n-3=16\)

<=> \(x_1-x_2=8\)(4) 

Từ (3); (4) => x1 = 5; x2 = -3

Thế vào (2) ta có: 5.(-3) = n - 3 <=> n = -12 

27 tháng 6 2020

Thiếu:

n = - 12 ( thỏa mãn điều kiện @) 

Vậy n = - 12.

24 tháng 10 2020

omae wa mou shindeiru

PTHĐGĐ là;

x^2-3x-m^2+1=0

Δ=(-3)^2-4(-m^2+1)=4m^2-4+9=4m^2+5>0

=>Phương trình luôn có hai nghiệm phân biệt

TH1: x1>0; x2>0

=>x1+2x2=3

mà x1+x2=3

nên x1=1; x2=1

x1*x2=-m^2+1

=>-m^2+1=1

=>m=0

TH2: x1<0; x2>0

=>-x1+2x2=3 và x1+x2=3

=>x1=1; x2=2

x1*x2=-m^2+1

=>-m^2+1=2

=>-m^2-1=0(loại)

TH2: x1>0; x2<0

=>x1-2x2=0 va x1+x2=3

=>x1=2 và x2=1

x1*x2=-m^2+1

=>-m^2+1=2

=>-m^2=1(loại)

TH3: x1<0; x2<0

=>-x1-2x2=3 và x1+x2=3

=>x1=9 và x2=-6

x1*x2=-m^2+1

=>-m^2+1=-54

=>-m^2=-55

=>\(m=\pm\sqrt{55}\)

1 tháng 5 2023

|x1|+2 |x2| = 3 : .

làm sao chứng minh đc