K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2017

Giải bài 5 trang 27 sgk Hình học 10 (Hệ trục tọa độ) | Để học tốt Toán 10

Biểu diễn các điểm trên hệ trục tọa độ ta thấy:

a) Điểm đối xứng với M(x0; y0) qua trục Ox là A(x0 ; –y0)

b) Điểm đối xứng với M(x0 ; y0) qua trục Oy là B(–x0 ; y0)

c) Điểm đối xứng với M(x0 ; y0) qua gốc O là C(–x0 ; –y0).

12 tháng 4 2016

Đường tròn tiếp xúc với hai trục tọa độ nên tâm I của nó phải cách đều hai trục tọa độ. Đường tròn này lại đi qua điểm M(2 ; 1), mà điểm M này lại là góc phần tư thứ nhất nên tọa độ của tâm I phải là số dương.

xI= yI > 0

gọi xI= yI = a. Như vậy phương trình đường tròn cần tìm là :

(2 – a)2 + (1 – a)2  = a2

a2  – 6a + 5 = 0  => a = 1 hoặc a = 5

Từ đây ta được hai đường tròn thỏa mãn điều kiện

+ Với a = 1 => (C1)   => (x – 1 )2 + (y – 1)2  = 1

x2 + y2 – 2x – 2y + 1 = 0

+ Với a = 1 => (C2)   => (x – 5 )2 + (y – 5)2  = 25

x2 + y2 – 10x – 10y + 25 = 0

30 tháng 3 2017

a) Hai điểm đối xứng nhau qua trục hoành thì có hoành độ bằng nhau và tung độ đối nhau.

M0 (x0; y0)=> A(x0;-y0)

b) Hai điểm đối xứng với nhau qua trục tung thì có tung độ bằng nhau còn hoành độ thì đối nhau.

M0 (x0; y0) => B(-x0;y0)

c) Hai điểm đối xứng nhau qua gốc O thì các tọa độ tương ứng đối nhau.

M0 (x0; y0) => C(-x0;-y0)

11 tháng 9 2019

Gọi đường tròn cần tìm là (C) có tâm I(a ; b) và bán kính bằng R.

(C) tiếp xúc với Ox ⇒ R = d(I ; Ox) = |b|

(C) tiếp xúc với Oy ⇒ R = d(I ; Oy) = |a|

⇒ |a| = |b|

⇒ a = b hoặc a = –b.

+ TH1: Xét a = b thì I(a; a), R = |a|

Ta có: M ∈ (C) ⇒ IM = R ⇒ IM2 = R2

⇒ (2 – a)2 + (1 – a)2 = a2

⇔ 4- 4a + a2 + 1 – 2a + a2 = a2

⇔ 2a2 – 6a + 5- a2 =0

⇔ a2 – 6a + 5 = 0

⇔ a = 1 hoặc a = 5.

* a = 1 ⇒ I(1; 1) và R = 1.

Ta có phương trình đường tròn (C): (x – 1)2 + (y – 1)2 = 1.

* a = 5 ⇒ I(5; 5), R = 5.

Ta có phương trình đường tròn (C) : (x – 5)2 + (y – 5)2 = 25.

+ TH2: Xét a = –b thì I(a; –a), R = |a|

Ta có: M ∈ (C) ⇒ IM = R ⇒ IM2 = R2

⇒ (2 – a)2 + (1 + a)2 = a2

⇔ 4 – 4a + a2 + 1+ 2a + a2 - a2 = 0

⇔ a2 – 2a + 5 = 0 (Phương trình vô nghiệm)

Vậy có hai đường tròn thỏa mãn là: (C): (x – 1)2 + (y – 1)2 = 1 hoặc (C) : (x – 5)2 + (y – 5)2 = 25.

30 tháng 3 2017

Đường tròn tiếp xúc với hai trục tọa độ nên tâm I của nó phải cách đều hai trục tọa độ. Đường tròn này lại đi qua điểm M(2 ; 1), mà điểm M này lại là góc phần tư thứ nhất nên tọa độ của tâm I phải là số dương.

xI= yI > 0

gọi xI= yI = a. Như vậy phương trình đường tròn cần tìm là :

(2 - a)2 + (1 – a)2 = a2

a2 – 6a + 5 = 0 => a = 1 hoặc a = 5

Từ đây ta được hai đường tròn thỏa mãn điều kiện

+ Với a = 1 => (C1) => (x - 1 )2 + (y – 1)2 = 1

x2 + y2 - 2x – 2y + 1 = 0

+ Với a = 1 => (C2) => (x - 5 )2 + (y – 5)2 = 25

x2 + y2 - 10x – 10y + 25 = 0

13 tháng 4 2016

a) Hai điểm đối xứng nhau qua trục hoành thì có hoành độ bằng nhau và tung độ đối nhau.

M0 (x0; y0)=> A(x0;-y0

b) Hai điểm đối xứng với nhau qua trục tung thì có tung độ bằng nhau còn hoành độ thì đối nhau.

M0 (x0; y0) => B(-x0;y0)

c) Hai điểm đối xứng nhau qua gốc O thì các tọa độ tương ứng đối nhau.

M0 (x0; y0) => C(-x0;-y0)

a: A(1;2); B(2;1)

=>\(\overrightarrow{AB}=\left(1;-1\right)\)

=>VTPT là (1;1)

Phương trình đường thẳng AB là:

1(x-1)+2(y-1)=0

=>x-1+2y-2=0

=>x+2y-3=0

b:

M(1;3); Δ: 3x+4y+10=0

Khoảng cách từ M đến Δ là:

\(d\left(M;\text{Δ}\right)=\dfrac{\left|1\cdot3+3\cdot4+10\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|3+12+10\right|}{5}=5\)

 

17 tháng 5 2017

a) Hai điểm đối xứng nhau qua trục Ox sẽ có cùng hoành độ và tung độ là hai số đối nhau.
\(M\left(4;3\right)\)\(\Rightarrow A\left(4;-3\right)\).
M A O 4 3 -3

17 tháng 5 2017

b) Hai điểm đối xứng qua trục Oy sẽ có cùng tung độ và hoành độ là hai số đối nhau.
\(M\left(4;3\right)\)\(\Rightarrow A\left(-4;3\right)\).
O x y 4 -4 3 M A