K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 11 2021

\(\overrightarrow{AN}=-\dfrac{1}{2}\overrightarrow{AM}\Rightarrow V_{\left(A;-\dfrac{1}{2}\right)}\left(C\right)=\left(C'\right)\)

Đường tròn (C) tâm (3;-4)

\(\Rightarrow\) Tọa độ tâm (C'):

\(\left\{{}\begin{matrix}x'=-\dfrac{1}{2}\left(3-5\right)+5=6\\y'=-\dfrac{1}{2}\left(-4-\left(-6\right)\right)+\left(-6\right)=-7\end{matrix}\right.\) \(\Rightarrow\left(6;-7\right)\)

Chọn B

NV
18 tháng 8 2020

Đường tròn \(\left(C_1\right)\) tâm \(A\left(-1;1\right)\) bán kính \(R=3\)

Đường tròn \(\left(C_2\right)\) tâm \(B\left(3;-2a\right)\) bán kính \(R'=\sqrt{3a^2-a+5}\)

Do \(\left(C_2\right)\) là ảnh của \(\left(C_2\right)\) qua phép tịnh tiến nên \(R=R'\)

\(\Leftrightarrow3a^2-a+5=9\Leftrightarrow3a^2-a-4=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=\frac{4}{3}\notin Z\left(l\right)\end{matrix}\right.\)

\(\Rightarrow B\left(3;2\right)\)

\(\Rightarrow\overrightarrow{v}=\overrightarrow{AB}=\left(4;1\right)\)

\(\Rightarrow\) Tổng tung và hoành độ bằng 5

NV
21 tháng 12 2020

Đường tròn ngoại tiếp tam giác ABC là ảnh của đường tròn (T) qua phép vị tự tâm O tỉ số \(k=2\)

\(\Rightarrow\) Phương trình đường tròn ngoại tiếp tam giác:

\(\left(x-2\right)^2+\left(y+1\right)^2=25\)

(Tọa độ tâm nhân 2 lần và bán kính nhân 2 lần)

NV
12 tháng 1 2021

M thuộc d, quỹ tích những điểm N thỏa mãn \(2\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow{0}\) là ảnh của d qua phép vị tự tâm O tỉ số \(k=-2\)

\(\Rightarrow\) Quỹ tích N là đường thẳng d' có pt \(x+y-6=0\)

d' không cắt (C)  nên không tồn tại cặp điểm M, N nào thỏa mãn yêu cầu

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

21 tháng 7 2020

Lấy A' đối xứng với A qua d. Khi đó: AM+MB=A'M+MB>=A'B. 

Vậy (AM+MB)min <=> A', M, B thẳng hàng.

Cách dựng: Lấy A' đối xứng A qua d, A'B cắt d tại M. M là điểm cần tìm

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng