K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 6 2021

Gọi tam giác cân ABC cân tại A với đường cao AH

\(\Rightarrow AB=17\) và \(AH=15\)

Đồng thời do ABC cân nên AH đồng thời là trung tuyến

\(\Rightarrow BH=CH\)

Áp dụng định lý Pitago cho tam giác vuông ABH:

\(BH^2=AB^2-AH^2=64\)

\(\Rightarrow BH=8\Rightarrow BC=BH+CH=16\left(cm\right)\)

20 tháng 6 2021

giả sử là tam giác ABC cân tại A có đường cao AD

\(\Rightarrow\left\{{}\begin{matrix}AB=AC=17cm\\AD=15cm\end{matrix}\right.\)

\(\Rightarrow BD=\sqrt{AB^2-AD^2}=\sqrt{17^2-15^2}=8\)

Vì tam giác ABC cân tại A có đường cao AD \(\Rightarrow\) AD là trung tuyến

\(\Rightarrow D\) là trung điểm BC \(\Rightarrow BC=2BD=2.8=16\left(cm\right)\)undefined