Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) Ta có: \(VT=x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)=VP(đpcm)
c) Ta có: \(VT=a\left(b+1\right)+b\left(a+1\right)\)
\(=ab+a+ab+b\)
\(=a+b+2ab\)(1)
Thay ab=1 vào biểu thức (1), ta được:
a+b+2(*)
Ta có: VP=(a+1)(b+1)=ab+a+b+1(2)
Thay ab=1 vào biểu thức (2), ta được:
1+a+b+1=a+b+2(**)
Từ (*) và (**) ta được VT=VP(đpcm)
Câu 2:
Ta có: \(\left(x-3\right)\left(x+x^2\right)+2\left(x-5\right)\left(x+1\right)-x^3=12\)
\(\Leftrightarrow x^2+x^3-3x-3x^2+2\left(x^2+x-5x-5\right)-x^3=12\)
\(\Leftrightarrow x^3-2x^2-3x+2x^2-8x-10-x^3-12=0\)
\(\Leftrightarrow-11x-22=0\)
\(\Leftrightarrow-11x=22\)
hay x=-2
Vậy: x=-2
\(M=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
\(=3\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{1}{2xy}\)
\(\ge3\cdot\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=12+2=14\)
Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)
\(M=3\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)+\dfrac{1}{2xy}\ge\dfrac{12}{2xy+x^2+y^2}+\dfrac{2}{\left(x+y\right)^2}=\dfrac{14}{\left(x+y\right)^2}=14\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Áp dụng bđt đã cho ta có \(M=4\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)-\dfrac{1}{x^2+y^2}\ge\dfrac{16}{2xy+x^2+y^2}-\dfrac{2}{\left(x+y\right)^2}=\dfrac{16}{\left(x+y\right)^2}-\dfrac{2}{\left(x+y\right)^2}=14\).
Đẳng thức xảy ra khi và chỉ khi \(x=y=\dfrac{1}{2}\)
9) \(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=b^2\left[a^2+2ab+b^2+a\left(a-b\right)+b\left(a-b\right)+a^2-2ab+b^2\right]\)
\(=b^2\left(a^2+2ab+b^2+a^2-ab+ab-b^2+a^2-2ab+b^2\right)\)
\(=b^2\left(3a^2+b^2\right)\)
10) \(\left(6x-1\right)^2-\left(3x+2\right)^2\)
\(=\left(6x-1-3x-2\right)\left(6x-1+3x+2\right)\)
\(=\left(3x-3\right)\left(9x+1\right)\)
11) \(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
12) \(\left(x^2-25\right)^2-\left(x-5\right)^2\)
\(=\left(x^2-25-x+5\right)\left(x^2-25+x-5\right)\)
\(=\left(x^2-x-20\right)\left(x^2-30+x\right)\)
13) \(x^6-x^4+2x^3+2x^2\)
\(=x^6-x^4+2x^3+2x^2-1+1\)
\(=\left(x^6+2x^3+1\right)-\left(x^4-2x^2+1\right)\)
\(=\left[\left(x^3\right)^2+2x^3.1+1^2\right]-\left[\left(x^2\right)^2-2x^2.1+1^2\right]\)
\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2\)
\(=\left(x^3+1-x^2+1\right)\left(x^3+1+x^2-1\right)\)
\(=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)
1) \(\left(x+y\right)^2-25\)
\(=\left(x+y\right)^2-5^2\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
2) \(100-\left(3x-y\right)^2\)
\(=10^2-\left(3x-y\right)^2\)
\(=\left(10-3x+y\right)\left(10+3x-y\right)\)
3) \(64x^2-\left(8a+b\right)^2\)
\(=\left(8x\right)^2-\left(8a+b\right)^2\)
\(=\left(8x-8a-b\right)\left(8x+8a+b\right)\)
4) \(4a^2b^4-c^4d^2\)
\(=\left(2ab^2\right)^2-\left(c^2d\right)^2\)
\(=\left(2ab^2-c^2d\right)\left(2ab^2+c^2d\right)\)
5) Đề đúng ko vậy ạ?
6) \(16x^3+54y^3\)
\(=2\left(8x^3+27y^3\right)\)
\(=2\left[\left(2x\right)^3+\left(3y\right)^3\right]\)
\(=2\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]\)
\(=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
7) \(8x^3-y^3\)
\(=\left(2x\right)^3-y^3\)
\(=\left(2x-y\right)\left[\left(2x\right)^2+2xy+y^2\right]\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
8) \(\left(a+b\right)^2-\left(2ab-b\right)^2\)
\(=\left(a+b-2ab+b\right)\left(a+b+2ab-b\right)\)
\(=\left(a+2b-2ab\right)\left(a+2ab\right)\)
a) M = y + 2; b) M = 2 ( a – b ) 3 .