K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2017

8 tháng 8 2017

bạn viết có thánh đọc ra á :v

8 tháng 8 2017

Bạn viết như vậy vẫn nhìn đc nhưng nhìn hơi khó

21 tháng 6 2019

Câu 1:

a) Ta có: \(VT=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)=VP(đpcm)

c) Ta có: \(VT=a\left(b+1\right)+b\left(a+1\right)\)

\(=ab+a+ab+b\)

\(=a+b+2ab\)(1)

Thay ab=1 vào biểu thức (1), ta được:

a+b+2(*)

Ta có: VP=(a+1)(b+1)=ab+a+b+1(2)

Thay ab=1 vào biểu thức (2), ta được:

1+a+b+1=a+b+2(**)

Từ (*) và (**) ta được VT=VP(đpcm)

Câu 2:

Ta có: \(\left(x-3\right)\left(x+x^2\right)+2\left(x-5\right)\left(x+1\right)-x^3=12\)

\(\Leftrightarrow x^2+x^3-3x-3x^2+2\left(x^2+x-5x-5\right)-x^3=12\)

\(\Leftrightarrow x^3-2x^2-3x+2x^2-8x-10-x^3-12=0\)

\(\Leftrightarrow-11x-22=0\)

\(\Leftrightarrow-11x=22\)

hay x=-2

Vậy: x=-2

4 tháng 11 2019

\(M=\frac{2}{xy}+\frac{3}{x^2+y^2}\)

\(=3\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{1}{2xy}\)

\(\ge3\cdot\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=12+2=14\)

Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)

NV
2 tháng 3 2021

\(M=3\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)+\dfrac{1}{2xy}\ge\dfrac{12}{2xy+x^2+y^2}+\dfrac{2}{\left(x+y\right)^2}=\dfrac{14}{\left(x+y\right)^2}=14\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

2 tháng 3 2021

Áp dụng bđt đã cho ta có \(M=4\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)-\dfrac{1}{x^2+y^2}\ge\dfrac{16}{2xy+x^2+y^2}-\dfrac{2}{\left(x+y\right)^2}=\dfrac{16}{\left(x+y\right)^2}-\dfrac{2}{\left(x+y\right)^2}=14\).

Đẳng thức xảy ra khi và chỉ khi \(x=y=\dfrac{1}{2}\)

17 tháng 8 2020

9) \(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=b^2\left[a^2+2ab+b^2+a\left(a-b\right)+b\left(a-b\right)+a^2-2ab+b^2\right]\)

\(=b^2\left(a^2+2ab+b^2+a^2-ab+ab-b^2+a^2-2ab+b^2\right)\)

\(=b^2\left(3a^2+b^2\right)\)

10) \(\left(6x-1\right)^2-\left(3x+2\right)^2\)

\(=\left(6x-1-3x-2\right)\left(6x-1+3x+2\right)\)

\(=\left(3x-3\right)\left(9x+1\right)\)

11) \(x^2-4x^2y^2+y^2+2xy\)

\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)

\(=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

12) \(\left(x^2-25\right)^2-\left(x-5\right)^2\)

\(=\left(x^2-25-x+5\right)\left(x^2-25+x-5\right)\)

\(=\left(x^2-x-20\right)\left(x^2-30+x\right)\)

13) \(x^6-x^4+2x^3+2x^2\)

\(=x^6-x^4+2x^3+2x^2-1+1\)

\(=\left(x^6+2x^3+1\right)-\left(x^4-2x^2+1\right)\)

\(=\left[\left(x^3\right)^2+2x^3.1+1^2\right]-\left[\left(x^2\right)^2-2x^2.1+1^2\right]\)

\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2\)

\(=\left(x^3+1-x^2+1\right)\left(x^3+1+x^2-1\right)\)

\(=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)

17 tháng 8 2020

1) \(\left(x+y\right)^2-25\)

\(=\left(x+y\right)^2-5^2\)

\(=\left(x+y-5\right)\left(x+y+5\right)\)

2) \(100-\left(3x-y\right)^2\)

\(=10^2-\left(3x-y\right)^2\)

\(=\left(10-3x+y\right)\left(10+3x-y\right)\)

3) \(64x^2-\left(8a+b\right)^2\)

\(=\left(8x\right)^2-\left(8a+b\right)^2\)

\(=\left(8x-8a-b\right)\left(8x+8a+b\right)\)

4) \(4a^2b^4-c^4d^2\)

\(=\left(2ab^2\right)^2-\left(c^2d\right)^2\)

\(=\left(2ab^2-c^2d\right)\left(2ab^2+c^2d\right)\)

5) Đề đúng ko vậy ạ?

6) \(16x^3+54y^3\)

\(=2\left(8x^3+27y^3\right)\)

\(=2\left[\left(2x\right)^3+\left(3y\right)^3\right]\)

\(=2\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]\)

\(=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

7) \(8x^3-y^3\)

\(=\left(2x\right)^3-y^3\)

\(=\left(2x-y\right)\left[\left(2x\right)^2+2xy+y^2\right]\)

\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

8) \(\left(a+b\right)^2-\left(2ab-b\right)^2\)

\(=\left(a+b-2ab+b\right)\left(a+b+2ab-b\right)\)

\(=\left(a+2b-2ab\right)\left(a+2ab\right)\)