Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) y = 2x - 3
Cho x = 0 \(\Rightarrow\) y = -3 \(\Rightarrow\) A(0; -3)
Cho y = 0 \(\Rightarrow\) \(x=\dfrac{3}{2}\) \(\Rightarrow\) B\(\left(\dfrac{3}{2};0\right)\)
b) ĐKXĐ của (d'): \(m^2-2\ne0\)
\(\Leftrightarrow m\ne\sqrt{2}\) và \(m\ne-\sqrt{2}\)
Để (d) // (d') thì
\(\left\{{}\begin{matrix}m^2-2=2\\m-1\ne-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\)
\(\Leftrightarrow m=2\) (nhận)
Vậy m = 2 thì (d) // (d')
\(\left(d\right)\text{//}\left(d;\right)\Leftrightarrow\left\{{}\begin{matrix}m-1=\dfrac{1}{m-1}\\4\ne m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=0\)
PT giao Ox: \(y=0\Leftrightarrow x=-\dfrac{4}{m-1}\Leftrightarrow A\left(-\dfrac{4}{m-1};0\right)\Leftrightarrow OA=\dfrac{4}{\left|m-1\right|}\)
PT giao Oy: \(x=0\Leftrightarrow y=4\Leftrightarrow B\left(0;4\right)\Leftrightarrow OB=4\)
\(S_{AOB}=2\Leftrightarrow\dfrac{1}{2}OA\cdot OB=2\Leftrightarrow OA\cdot OB=4\\ \Leftrightarrow\dfrac{4}{\left|m-1\right|}\cdot4=4\\ \Leftrightarrow\left|m-1\right|=\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5}{4}\\m=\dfrac{3}{4}\end{matrix}\right.\)
1: Thay x=0 và y=m-1 vào y=ax+b, ta được:
a*0+b=m-1
=>b=m-1
=>y=ax+m-1
2: PTHĐGĐ là:
x^2-ax-m+1=0
Δ=(-a)^2-4(-m+1)=a^2+4m-4
Để (P) cắt (d) tại hai điểm phân biệt thì a^2+4m-4>0
=>a^2>-4m+4
=>-4m+4>0
=>m<1
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>m=-4
b: PTHĐGĐ là;
1/2x^2-2x+m-1=0
=>x^2-4x+2m-2=0
Δ=(-4)^2-4(2m-2)
=16-8m+8=-8m+24
Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0
=>m<3
x1x2(y1+y2)+48=0
=>x1x2(x1^2+x2^2)+48=0
=>(2m-2)[4^2-2(2m-2)]+48=0
=>(2m-2)(16-4m+4)+48=0
=>(2m-2)*(20-4m)+48=0
=>40m-8m^2-40+8m+48=0
=>-8m^2+48m+8=0
=>m=3+căn 10 hoặc m=3-căn 10
Akai Haruma