K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 5 2019

Đường tròn (C) tâm \(I\left(-1;4\right)\) bán kính \(R=5\)

Do d' song song d nên pt d' có dạng: \(3x+y+c=0\)

Áp dụng định lý Pitago ta có:

\(d\left(I;d'\right)=\sqrt{R^2-3^2}=4\)

\(\Rightarrow\frac{\left|-1.3+4+c\right|}{\sqrt{3^2+1^2}}=4\Leftrightarrow\left|c+1\right|=4\sqrt{10}\Rightarrow\left[{}\begin{matrix}c=4\sqrt{10}-1\\c=-4\sqrt{10}-1\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x+y+4\sqrt{10}-1=0\\3x+y-4\sqrt{10}-1=0\end{matrix}\right.\)

7 tháng 5 2019

chỗ\(\sqrt{R}\) R2 - 32 ấy cậu. 3 ở đâu vậy ạ?

\(d\left(I;\left(d\right)\right)=\dfrac{\left|3\cdot\left(-1\right)+2\cdot\left(-1\right)-15\right|}{\sqrt{3^2+1}}=2\sqrt{10}\)

\(R=\sqrt{\left(2\sqrt{10}\right)^2+\left(\dfrac{6}{2}\right)^2}=7\)

=>(x+1)^2+(y-2)^2=49

7 tháng 8 2019

Đáp án C

Đường tròn (C) có tâm  I( -1 ; 3) và bán kính R= 2

Do d’// d nên phương trình của d’ có dạng : 3x- 4y + c= 0.

Để d’ chắn trên (C) một dây cung có độ dài lớn nhất thì d’ phải đi qua tâm I của đường tròn ( trong các dây của đường tròn dây lớn nhất là đường kính).

Do I( -1 ; 3) thuộc d’ nên : 3.(-1) – 4.3 +c= 0

=> c = 15

Vậy đường thẳng cần tìm là d’ : 3x- 4y + 15= 0.

NV
24 tháng 7 2021

Đường thẳng song song d nên nhận (3;-4) là 1 vtpt

Phương trình:

\(3\left(x-2\right)-4\left(y-1\right)=0\Leftrightarrow3x-4y-2=0\)

18 tháng 5 2021

I I 1 I 2 d :3x-4y+1=0 1 d :6x+8y-1=0 2 p:3x+y-1=0

Đường tròn (C) tiếp xúc với d1 và d2 , suy ra tâm của nó nằm trên đường phân giác của góc (d1;d2)

Khoảng cách từ một điểm bất kì trên phân giác của góc đến hai cạnh của góc thì bằng nhau, ta có:

\(\frac{\left|3x-4y+1\right|}{5}=\frac{\left|6x+8y-1\right|}{10}\Leftrightarrow\orbr{\begin{cases}2\left(3x-4y+1\right)=6x+8y-1\\2\left(3x-4y+1\right)=-6x-8y+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}16y-3=0\\12x+1=0\end{cases}}\)

Xét hệ \(\hept{\begin{cases}3x+y-1=0\\16y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{48}\\y=\frac{3}{16}\end{cases}}\Rightarrow I_1\left(\frac{13}{48};\frac{3}{16}\right)\Rightarrow R_1=\frac{17}{80}\)

\(\Rightarrow\left(C_1\right):\left(x-\frac{13}{48}\right)^2+\left(y-\frac{3}{16}\right)^2=\frac{289}{6400}\)

Xét hệ: \(\hept{\begin{cases}3x+y-1=0\\12x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{12}\\y=\frac{5}{4}\end{cases}}}\Rightarrow I_2\left(-\frac{1}{12};\frac{5}{4}\right)\Rightarrow R_2=\frac{17}{20}\)

\(\Rightarrow\left(C_2\right):\left(x+\frac{1}{12}\right)^2+\left(y-\frac{5}{4}\right)^2=\frac{289}{400}\).

19 tháng 5 2021

Đường tròn (C) tiếp xúc với d1 và d2 , suy ra tâm của nó nằm trên đường phân giác của góc (d1;d2)

Khoảng cách từ một điểm bất kì trên phân giác của góc đến hai cạnh của góc thì bằng nhau, ta có:

|3x−4y+1|5 =|6x+8y−1|10 ⇔[

2(3x−4y+1)=6x+8y−1
2(3x−4y+1)=−6x−8y+1

⇔[

16y−3=0
12x+1=0

Xét hệ {

3x+y−1=0
16y−3=0

⇔{

x=1348 
y=316 

⇒I1(1348 ;316 )⇒R1=1780 

⇒(C1):(x−1348 )2+(y−316 )2=2896400 

Xét hệ: {

3x+y−1=0
12x+1=0

⇔{

x=−112 
y=54 

⇒I2(−112 ;54 )⇒R2=1720 

⇒(C2):(x+112 )2+(y−54 )2=289400 .

(C): x^2+y^2-4x+6y-12=0

=>O(2;-3)

R=căn 2^2+(-3)^2+12=5

Gọi đường cần tìm là (d'): x+y+c=0

Gọi A,B lần lượt là giao điểm của (d') và (C)

ΔOHB vuông tại H

\(d\left(O;AB\right)=\dfrac{\left|2+\left(-3\right)+c\right|}{\sqrt{2}}=HO\)

\(=\sqrt{OB^2-BH^2}=3\)

=>\(\left[{}\begin{matrix}c=3\sqrt{2}+1\\c=-3\sqrt{2}+1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x+y-3\sqrt{2}+1=0\\x+y+3\sqrt{2}+1=0\end{matrix}\right.\)