Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Lời giải. Không gian mẫu là số cách chọn 2 điểm bất kỳ trong 14 điểm đã cho.
Suy ra số phần tử của không gian mẫu là Ω = C 14 2 = 91 .
Gọi A là biến cố :
Đoạn thẳng nối 2 điểm được chọn cắt hai trục tọa độ.
Để xảy ra biến cố A thì hai đầu đoạn thẳng đó phải ở góc phần tư thứ nhất và thứ ba hoặc phần tư thứ hai và thứ tư.
● Hai đầu đoạn thẳng ở góc phần tư thứ nhất và thứ ba, có C 2 1 . C 4 1 cách.
● Hai đầu đoạn thẳng ở góc phần tư thứ hai và thứ tư, có C 3 1 . C 5 1 cách.
Suy ra số phần tử của biến cố A là
Ω A = C 2 1 . C 4 1 + C 3 1 . C 5 1 =23
Vậy xác suất cần tính
P ( A ) = Ω A Ω = 23 91
Đáp án là C
Số tứ giác có 4 đỉnh là 4 điểm trong 13 điểm đã cho là C 8 2 . C 5 2 = 280
Mỗi tứ giác đó có hai đường chéo cắt nhau tại 1 điểm thuộc góc phần tư thứ nhất của hệ tọa độ Oxy
Vậy số giao điểm là 280.
Đáp án A
Số cách chọn 3 điểm bất kì là C 30 3
Để 3 điểm đó lập thành một tam giác thì 3 điểm đó không thẳng hàng
Số cách chọn 1 điểm thuộc d 1
2 điểm thuộc d 2 : C 10 1 . C 20 2
Số cách chọn 2 điểm thuộc d 1
1 điểm thuộc d 2 : C 10 2 . C 20 1
Xác suất để 3 điểm chọn được tạo thành tam giác là
Đáp án A
Để con châu chấu đáp xuống các điểm M(x; y) có x + y < 2 thì con châu chấu sẽ nhảy trong khu vực hình thang BEIA
Để M(x; y) có tọa độ nguyên thì x ∈ - 2 ; - 1 ; 0 ; 1 ; 2 , y ∈ { 0 ; 1 ; 2 }
Nếu x ∈ - 2 ; - 1 thì y ∈ { 0 ; 1 ; 2 } có 2.3 = 6 điểm
Nếu x = 0 thì y ∈ { 0 ; 1 } có 2 điểm
Nếu x =1 => y = 0 => có 1 điểm
=> có tất cả 6 + 2 + 1 = 9 điểm. Để con châu chấu nhảy trong hình chữ nhật mà đáp xuống các điểm có tọa độ nguyên thì x ∈ - 2 ; - 1 ; 0 ; 1 ; 2 ; 3 ; 4 , y ∈ { 0 ; 1 ; 2 } . Số các điểm M(x; y) có tọa độ nguyên là: 7.3 = 21 điểm. Xác suất cần tìm là: P = 9 21 = 3 7 .
Chọn C
Lời giải. Số các điểm có tọa độ nguyên thuộc hình chữ nhật là 7.3 = 21 điểm vì
Để con châu chấu đáp xuống các điểm M(x,y) có x + y < 2
thì con châu chấu sẽ nhảy trong khu vực hình thang BEIA
Để M(x,y) có tọa độ nguyên thì
= Nếu x ∈ - 2 ; - 1 thì y ∈ 0 ; 1 ; 2
⇒ có 6 điểm
= Nếu x = 0 thì y ∈ 0 ; 1 ⇒ có 2 điểm
= Nếu x = 1 ⇒ y = 0 ⇒ có 1 điểm
⇒ có tất cả 6 + 2 +1 = 9 điểm thỏa mãn
Vậy xác suất cần tính P = 9 21 = 3 7
Chọn 3 điểm trong 15 điểm có: \(C^3_{15}\)(cách chọn)
Chọn 3 điểm trong 6 điểm thẳng hàng có:\(C^3_6\)(cách)
=>Số tam giác được tạo thành từ 15 điểm đã cho là: \(C^3_{15}-C^3_6\)(tam giác)
Đáp án C.
- Số tam giác tạo thành là:
- Tam giác ABC tạo thành có 2 cạnh cắt trục tọa độ khi B; C thuộc 1 góc phần tư, A thuộc góc phần tư khác:
+ A thuộc góc phần tư thứ nhất, có tam giác thỏa mãn.
+ A thuộc góc phần tư thứ hai, có tam giác thỏa mãn.
+ A thuôc góc phần tư thứ ba, có tam giác thỏa mãn.
+ A thuôc góc phần tư thứ tư, có tam giác thỏa mãn.
- Xác suất cần tìm là: