Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Tọa độ A là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)\cdot x+3=0\left(m+1\right)+3=3\end{matrix}\right.\)
Vậy: A(0;3)
2: Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\\left(m+1\right)x+3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(m+1\right)=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{3}{m+1}\end{matrix}\right.\)
=>\(B\left(\dfrac{-3}{m+1};0\right)\)
\(OB=\sqrt{\left(-\dfrac{3}{m+1}-0\right)^2+\left(0-0\right)^2}=\dfrac{3}{\left|m+1\right|}\)
\(OA=\sqrt{\left(0-0\right)^2+\left(3-0\right)^2}=3\)
OA=2OB
=>\(3=\dfrac{6}{\left|m+1\right|}\)
=>|m+1|=2
=>\(\left[{}\begin{matrix}m+1=2\\m+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)
a: (d): y=(m-1)x+m-3
Thay x=0 và y=1 vào (d), ta được:
0(m-1)+m-3=1
=>m-3=1
=>m=4
b: Tọa độ A là;
\(\left\{{}\begin{matrix}x=0\\y=0\left(m-1\right)+m-3=m-3\end{matrix}\right.\)
=>OA=|m-3|
Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\x\left(m-1\right)+m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{-m+3}{m-1}\end{matrix}\right.\)
=>\(OB=\left|\dfrac{m-3}{m-1}\right|=\dfrac{\left|m-3\right|}{\left|m-1\right|}\)
ΔOAB vuông cân tại O
=>\(\left|m-3\right|=\dfrac{\left|m-3\right|}{\left|m-1\right|}\)
=>\(\left|m-3\right|\left(1-\dfrac{1}{\left|m-1\right|}\right)=0\)
=>m-3=0 hoặc m-1=1 hoặc m-1=-1
=>m=3 hoặc m=2 hoặc m=0
b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi
Khi đó 2 nghiệm của phương trình là:
Kẻ BB' ⊥ OM ; AA' ⊥ OM
Ta có:
S A O M = 1/2 AA'.OM ; S B O M = 1/2 BB'.OM
Theo bài ra:
Do m > 0 nên m = 8
Vậy với m = 8 thì thỏa mãn điều kiện đề bài.
\(\left(d\right)\text{//}\left(d;\right)\Leftrightarrow\left\{{}\begin{matrix}m-1=\dfrac{1}{m-1}\\4\ne m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=0\)
PT giao Ox: \(y=0\Leftrightarrow x=-\dfrac{4}{m-1}\Leftrightarrow A\left(-\dfrac{4}{m-1};0\right)\Leftrightarrow OA=\dfrac{4}{\left|m-1\right|}\)
PT giao Oy: \(x=0\Leftrightarrow y=4\Leftrightarrow B\left(0;4\right)\Leftrightarrow OB=4\)
\(S_{AOB}=2\Leftrightarrow\dfrac{1}{2}OA\cdot OB=2\Leftrightarrow OA\cdot OB=4\\ \Leftrightarrow\dfrac{4}{\left|m-1\right|}\cdot4=4\\ \Leftrightarrow\left|m-1\right|=\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5}{4}\\m=\dfrac{3}{4}\end{matrix}\right.\)
a) Vẽ đồ thị:
b) - Từ hình vẽ ta có: yA = yB = 4 suy ra:.
+ Hoành độ của A: 4 = 2.xA => xA = 2 (*)
+ Hoành độ của B: 4 = xB => xB = 4
=> Tọa độ 2 điểm là: A(2, 4); B(4, 4)
- Tìm độ dài các cạnh của ΔOAB
((*): muốn tìm tung độ hay hoành độ của một điểm khi đã biết trước hoành độ hay tung độ, ta thay chúng vào phương trình đồ thị hàm số để tìm đơn vị còn lại.)
1: Thay x=0 và y=4 vào (d), ta được:
\(0\left(m^2+1\right)+m+2=4\)
=>m+2=4
=>m=2
2: tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\x\left(m^2+1\right)+m+2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{-m-2}{m^2+1}\\y=0\end{matrix}\right.\)
Tọa độ B là: \(\left\{{}\begin{matrix}x=0\\y=0\left(m^2+1\right)+m+2=m+2\end{matrix}\right.\)
vậy: O(0;0); \(A\left(\dfrac{-m-2}{m^2+1};0\right);B\left(0;m+2\right)\)
\(OA=\sqrt{\left(\dfrac{-m-2}{m^2+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\dfrac{\left(m+2\right)}{m^2+1}}^2=\dfrac{\left|m+2\right|}{m^2+1}\)
\(OB=\sqrt{\left(0-0\right)^2+\left(m+2-0\right)^2}=\sqrt{0^2+\left(m+2\right)^2}=\left|m+2\right|\)
Vì Ox\(\perp\)Oy nên ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot\dfrac{\left(m+2\right)^2}{m^2+1}\)
Để \(S_{OBA}=\dfrac{1}{2}\) thì \(\dfrac{1}{2}\cdot\dfrac{\left(m+2\right)^2}{m^2+1}=\dfrac{1}{2}\)
=>\(\dfrac{\left(m+2\right)^2}{m^2+1}=1\)
=>\(\left(m+2\right)^2=m^2+1\)
=>\(m^2+4m+4=m^2+1\)
=>4m+4=1
=>4m=-3
=>\(m=-\dfrac{3}{4}\)