Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Đặt \(x^2=t\left(t\ge0\right)\)khi đó phương trình tương đương
\(t+t^2-6=0\)
Ta có : \(\Delta=1+24=25\)
\(t_1=\frac{-1-5}{2}=-3;t_2=\frac{-1+5}{2}=2\)
TH1 : \(x^2=-3\)( vô lí )
TH2 : \(x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
Vậy tập nghiệm của phương trình là S = { \(\pm\sqrt{2}\)}
a) \(x^2+x^4-6=0\)
Đặt \(x^2=t\left(t\ge0\right)\)
⇒ t + \(t^2\) - 6 = 0
⇒ \(t^2+t-6=0\)
⇒ Δ = \(1^2-4.\left(-6\right)\)
= 25
x1 = \(\dfrac{-1-5}{2}\) = - 3 (L)
x2 = \(\dfrac{-1+5}{2}\) = 2 (TM)
Thay \(x^2\) = 2 ⇒ x = \(\pm\sqrt{2}\)
Vậy x = \(\left\{\sqrt{2};-\sqrt{2}\right\}\)
b) (d) : y = 4x +1 - m
(p) : y = \(x^2\)
Xét phương trình hoành độ giao điểm
\(x^2=4x+1-m\)
⇒ \(x^2-4x+m-1=0\)
Δ' = 4 - m + 1
= 5 - m
Để (d) cắt (p) tại hai điểm phân biệt thì Δ' > 0
5 - m > 0
⇒ m < 5
Vậy m < 5 thì (d) cắt (p) tại hai điểm phân biệt
Gọi tọa độ giao điểm của (d) và (p) là (x1;y1) và (x2;y2)
Theo Vi-ét : \(\left\{{}\begin{matrix}S=x_1+x_2=4\\P=x_1x_2=m-1\end{matrix}\right.\)
và y1 = \(x_1^{2_{ }}\) ; y2 = \(x_2^2\)
Khi đó : \(\sqrt{y_1}.\sqrt{y_2}=5\) ⇒ \(\sqrt{y_1.y_2}=5\)
⇔ \(\sqrt{\left(x_1x_2\right)^2}=5\) ⇔ \(|m-1|=5\)
⇔ \(\left[{}\begin{matrix}m-1=5\\m-1=-5\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}m=6\left(L\right)\\m=-4\left(TM\right)\end{matrix}\right.\)
Vậy m = - 4 thì TMĐKBT
b: Thay m=2 vào (d), ta được:
y=2x-2+1=2x-1
Phương trình hoành độ giao điểm là:
\(x^2=2x-1\)
=>\(x^2-2x+1=0\)
=>(x-1)^2=0
=>x-1=0
=>x=1
Thay x=1 vào (P), ta được:
\(y=1^2=1\)
Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)
b: Phương trình hoành độ giao điểm là:
\(x^2=2x-m+1\)
=>\(x^2-2x+m-1=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)
=4-4m+4
=-4m+8
Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0
=>-4m+8>0
=>-4m>-8
=>m<2
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
y1,y2 thỏa mãn gì vậy bạn?
\(a,PTHDGD:2x-1=-x+2\Leftrightarrow x=1\Leftrightarrow y=1\Leftrightarrow M\left(1;1\right)\\ b,\text{Gọi đt của }\left(d\right)\text{ là }y=ax+b\left(a\ne0\right)\\ \Leftrightarrow\left\{{}\begin{matrix}a+b=1\\0a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=4\end{matrix}\right.\Leftrightarrow\left(d\right):y=-3x+4\)
PTHHĐGĐ là:
x^2-2x-m^2+2m=0
Δ=(-2)^2-4(-m^2+2m)
=4+4m^2+8m=(2m+2)^2
Để phương trình có hai nghiệm phân biệt thì 2m+2<>0
=>m<>-1
x1^2+2x2=3m
=>x1^2+x2(x1+x2)=3m
=>x1^2+x2^2+x1x2=3m
=>(x1+x2)^2-x1x2=3m
=>2^2-(-m^2+2m)=3m
=>4+m^2-2m-3m=0
=>m^2-5m+4=0
=>m=1 hoặc m=4
a, Thay m = -1/2 vào (d) ta được :
\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)
Hoành độ giao điểm thỏa mãn phương trình
\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)
\(\Delta=4-4\left(-3\right)=4+12=16>0\)
\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)
Vói x = -1 thì \(y=-2+3=1\)
Vớ x = 3 thì \(y=6+3=9\)
Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )
b, mình chưa học
\(y_1+y_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)
Xét phương trình hoành độ giao điểm của (d) và (P) ta có:
\(x^2=2x-2m+2\)
\(\Leftrightarrow x^2-2x+2m-2=0\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)
Từ (1) \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow4-4m+4=8\)
\(\Leftrightarrow m=0\)
vậy..
1: Thay x=0 và y=m-1 vào y=ax+b, ta được:
a*0+b=m-1
=>b=m-1
=>y=ax+m-1
2: PTHĐGĐ là:
x^2-ax-m+1=0
Δ=(-a)^2-4(-m+1)=a^2+4m-4
Để (P) cắt (d) tại hai điểm phân biệt thì a^2+4m-4>0
=>a^2>-4m+4
=>-4m+4>0
=>m<1
Bài này giải như số ý, kết luận khác chút.
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=\left(k-1\right)x+4\)
\(\Leftrightarrow x^2-\left(k-1\right)x-4=0\)
( a = 1; b = - (k-1); c = -4 )
\(\Delta=b^2-4ac\)
\(=\left[-\left(k-1\right)\right]^2-4.1.\left(-4\right)\)
\(=\left(k-1\right)^2+16>0\forall k\)
Vậy: (P) và (d) luôn cắt nhau tại 2 điểm phân biệt
Theo Vi-et ta có: \(\hept{\begin{cases}S=y_1+y_2=-\frac{b}{a}=k-1\\P=y_1y_2=\frac{c}{a}=-4\end{cases}}\)
Ta có: \(y_1+y_2=y_1y_2\)
\(\Leftrightarrow S=P\)
\(\Leftrightarrow k-1=-4\)
\(\Leftrightarrow k=-3\left(TMĐK\right)\)
Vậy: k = -3 là giá trị cần tìm
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>m=-4
b: PTHĐGĐ là;
1/2x^2-2x+m-1=0
=>x^2-4x+2m-2=0
Δ=(-4)^2-4(2m-2)
=16-8m+8=-8m+24
Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0
=>m<3
x1x2(y1+y2)+48=0
=>x1x2(x1^2+x2^2)+48=0
=>(2m-2)[4^2-2(2m-2)]+48=0
=>(2m-2)(16-4m+4)+48=0
=>(2m-2)*(20-4m)+48=0
=>40m-8m^2-40+8m+48=0
=>-8m^2+48m+8=0
=>m=3+căn 10 hoặc m=3-căn 10
Tung độ => y
câu b thôi bạn