\(\left(d_1\right):y=2x+m;\left(d_2\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 1 2019

Phương trình hoành độ giao điểm:

\(\dfrac{3}{2}x+4=-2x+11\Rightarrow x=2\Rightarrow y=7\)

Vậy \(M\left(2;7\right)\)

\(x_A=-2\Rightarrow y_A=\dfrac{3}{2}x_A+4=1\Rightarrow A\left(-2;1\right)\)

Câu b có nhiều cách giải, 1 cách giải đơn giản không cần lập pt đường thẳng AM là cộng trừ diện tích

Qua trên trục Ox lấy 2 điểm có cùng hoành độ với A và M là \(B\left(-2;0\right)\)\(C\left(2;0\right)\) \(\Rightarrow AB//CM\)\(AB\perp BC;BC\perp CM\)

\(\Rightarrow\Delta OAB\) vuông tại B, \(\Delta OCM\) vuông tại C và \(ABCM\) là hình thang vuông

\(\Rightarrow S_{AOM}=S_{ABCM}-S_{OAB}-S_{OCM}\)

\(\Rightarrow S_{AOM}=\dfrac{1}{2}\left(AB+CM\right).BC-\dfrac{1}{2}AB.OB-\dfrac{1}{2}OC.CM\)

Với \(AB=y_A-y_B=1;CM=y_M-y_C=7;BC=x_C-x_B=4\)

\(OB=x_O-x_B=2;OC=x_C-x_O=2\)

\(\Rightarrow S_{AOM}=16-1-7=8\) (đvdt)

11 tháng 7 2017

Hoành độ giao điểm  \(d_1;d_2\)là nghiệm của phương trình \(2x-3=x-2\Rightarrow x=1\Rightarrow y=-1\Rightarrow A\left(1;-1\right)\)

Hoành độ giao điểm \(d_2;d_3\)là nghiệm của phương trình \(x-2=4x-2\Rightarrow x=0\Rightarrow y=-2\Rightarrow B\left(0;-2\right)\)

Hoành độ giao điểm \(d_1;d_3\)là nghiệm của phương trình \(2x-3=4x-2\Rightarrow x=-\frac{1}{2}\Rightarrow y=-4\Rightarrow C\left(-\frac{1}{2};-4\right)\)

Gọi \(G\left(\frac{x_A+x_B+x_C}{3};\frac{y_A+y_B+y_C}{3}\right)\)là trọng tâm tam giác ABC

Khi đó \(\frac{x_A+x_B+x_C}{3}=\frac{1+0-\frac{1}{2}}{3}=\frac{1}{6}\)

\(\frac{y_A+y_B+y_C}{3}=\frac{-1-2-4}{3}=-\frac{7}{3}\)

Vậy \(G\left(\frac{1}{6};-\frac{7}{3}\right)\) 

  

16 tháng 6 2017

Hệ hai phương trình bậc nhất hai ẩn