Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong mặt phẳng oxy cho tam giác ABC có C(-2;-5/3),và cosBAC=4/5,điểm M thuộc BC.ME,MF lần lượt vuông góc với AB,AC.đương thẳng È có phương trình 2x+y-1=0,điểm I(7/3;1/3) là trung điểm AM tìm tọa độ điểm A biết tung độ điểm F nhỏ hơn 0.
Gọi tâm I thuộc d : 3x-y-3=0 nên \(I\left(a;3a-2\right)\)Vì (C) đi qua A và B nên ta có IA=IB
\(\overrightarrow{IA}=\left(3-a;3-3a\right)\Rightarrow IA^2=\left(3-a\right)^2+\left(3-3a\right)^2\)
\(\overrightarrow{IB}=\left(-1-a;5-3a\right)\Rightarrow IB^2=\left(1+a\right)^2+\left(5-3a\right)^2\)
Có IA=IB nên \(\left(3-a\right)^2+\left(3-3a\right)^2=\left(1+a\right)^2+\left(5-3a\right)^2\Leftrightarrow-8+4a=0\Leftrightarrow a=2\) Vậy I(2;4) \(R=IA=\sqrt{10}\)
Vậy ptdt (C) là : \(\left(x-2\right)^2+\left(y-4\right)^2=10\)
\(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(3;-9\right)\)
Bận ăn cơm :(
Bạn nhầm vị trí điểm I với điểm K à?
Vậy mình nêu hướng giải thôi nhé, làm biếng quá
Dễ dàng chứng minh \(\Delta_vADK=\Delta_vBAI\Rightarrow\widehat{DAK}=\widehat{IBA}\)
Mà \(\widehat{DAK}+\widehat{KAB}=90^0\Rightarrow\widehat{IBA}+\widehat{KAB}=90^0\Rightarrow AK\perp BI\)
Gọi E là trung điểm AB \(\Rightarrow CE//AK\) (hbh)
Gọi G là giao điểm BI và CE thì EG là đtb tam giác ABM (qua trung điểm E và song song cạnh đáy)
\(\Rightarrow\) G là trung điểm BM \(\Rightarrow CG\) là đường cao đồng thời là trung tuyến trong tam giác BCM
\(\Rightarrow\Delta BCM\) cân tại C \(\Rightarrow BC=CM=\sqrt{10}\)
\(AB=BC=\sqrt{10};AI=\frac{1}{2}AD=\frac{\sqrt{10}}{2}\)
\(\Rightarrow BI=\sqrt{AB^2+AI^2}=\frac{5\sqrt{2}}{2}\Rightarrow MB=\frac{AB^2}{BI}=2\sqrt{2}\)
\(\Rightarrow cos\widehat{MCB}=\frac{2BC^2-BM^2}{2BC^2}=\frac{3}{5}\)
\(\Rightarrow\) Viết được pt BC (qua C và tạo với đường thẳng CM đã biết 1 góc có \(cos=\frac{3}{5}\))
Tọa độ B là giao của BC và đường tròn tâm C bán kính BC có pt \(\left(x-2\right)^2+\left(y+2\right)^2=10\)
Nhân tiện hướng giải bài kia:
Gọi M là trung điểm AD, G là trọng tâm tam giác ABC
Do ABC cân tại A nên G và K cùng thuộc trung tuyến ứng với BC \(\Rightarrow GK\perp BC\)
E là trọng tâm ABD \(\Rightarrow\) DE đi qua trung điểm AB \(\Rightarrow\) DE là đường trung bình tam giác ABC (đi qua trung điểm của AB và AC)
\(\Rightarrow DE//BC\Rightarrow GK\perp DE\) (*)
K là tâm đường tròn ngoại tiếp, D là trung điểm AC \(\Rightarrow KD\perp AC\) (1)
G là trọng tâm ABC, E là trọng tâm ABD
\(\Rightarrow\left\{{}\begin{matrix}BG=\frac{2}{3}BD\\BE=\frac{2}{3}BM\end{matrix}\right.\) \(\Rightarrow EG//MD\) (Talet đảo) (2)
(1);(2) \(\Rightarrow KD\perp EG\) (**)
(*);(**) \(\Rightarrow\) G là trực tâm EDK \(\Rightarrow DG\perp EK\) hay \(BD\perp EK\)
\(\Rightarrow\) Viết được pt BD (qua Q và vuông góc EK)
Do D thuộc BD, gọi tọa độ D theo 1 ẩn
P thuộc AC \(\Rightarrow PD\perp KD\Rightarrow\overrightarrow{PD}.\overrightarrow{KD}=0\Rightarrow\) tìm được tọa độ D
Viết được pt AC (qua P và vuông góc BD)
Viết pt EG (qua E và song song AC) \(\Rightarrow\) tọa độ G là giao điểm EG và BD
\(\Rightarrow\) Phương trình GK \(\Rightarrow\) tọa đô A là giao GK và AC
\(\Rightarrow\)Tọa độ C (D là trung điểm AC)
\(d\left(M;\Delta\right)=\dfrac{\left|3.1-4.\left(-2\right)+4\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{15}{5}=3\)
Do \(M\in d\Rightarrow M\left(3m;4-4m\right)\)
Gọi \(N\left(x;y\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AN}=\left(x-1;y-1\right)\\\overrightarrow{AM}=\left(3m-1;3-4m\right)\end{matrix}\right.\)
Do A, M, N thẳng hàng nên ta có: \(\frac{x-1}{3m-1}=\frac{y-1}{3-4m}\)
\(\Leftrightarrow\left(x-1\right)\left(3-4m\right)=\left(y-1\right)\left(3m-1\right)\)
\(\Leftrightarrow3\left(x-1\right)-4m\left(x-1\right)=3m\left(y-1\right)-\left(y-1\right)\)
\(\Leftrightarrow m=\frac{3x+y-4}{4x+3y-7}\) (1)
Mặt khác \(\overrightarrow{AM}.\overrightarrow{AN}=4\Leftrightarrow\left(x-1\right)\left(3m-1\right)+\left(y-1\right)\left(3-4m\right)=4\)
\(\Leftrightarrow m=\frac{x-3y+6}{3x-4y+1}\) (2)
Từ (1), (2) ta có: \(\frac{3x+y-4}{4x+3y-7}=\frac{x-3y+6}{3x-4y+1}\)
\(\Leftrightarrow\left(3x+y-4\right)\left(3x-4y+1\right)-\left(x-3y+6\right)\left(4x+3y-7\right)=0\)
\(\Leftrightarrow5x^2+5y^2-26x-54y+38=0\)
\(\Leftrightarrow x^2+y^2-\frac{26}{5}x-\frac{54}{5}y+\frac{38}{5}=0\)
N nằm trên đường tròn tâm \(I\left(\frac{13}{5};\frac{27}{5}\right)\) bán kính \(R=\frac{2\sqrt{177}}{5}\)
Cách tính cơ bản là vậy, nhưng số hơi xấu nên có thể tính nhầm đoạn nào đó
Ta có phương trình hoành độ giao điểm là
\(\dfrac{-1}{2}x^2=x-4\)
⇒\(\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Ta có : a(2;y1); b(-4;y2). Do hai điểm a và b cùng thuộc đường thẳng d nên ta có:
\(\left\{{}\begin{matrix}y_1=x_1-4=2-4=-2\\y_2=x_2-4=-4-4=-8\end{matrix}\right.\)
Khi đó ta có:
y1+y2 -5(x1+x2)=-2-8-5(2-4)=0 ⇒đpcm
VẬY..............
tọa độ ab là (-2-1;3-2)=(-3;1)