Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2 đường thẳng: \(y=\left(m^2+2\right)x+m\left(d\right)\)
\(y=6x+2\left(d'\right)\)
Để \(\left(d\right)//\left(d'\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2+2=6\\m\ne2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne2\end{matrix}\right.\)
\(\Leftrightarrow m=-2\)
Vậy.......
a) y = 2x - 3
Cho x = 0 \(\Rightarrow\) y = -3 \(\Rightarrow\) A(0; -3)
Cho y = 0 \(\Rightarrow\) \(x=\dfrac{3}{2}\) \(\Rightarrow\) B\(\left(\dfrac{3}{2};0\right)\)
b) ĐKXĐ của (d'): \(m^2-2\ne0\)
\(\Leftrightarrow m\ne\sqrt{2}\) và \(m\ne-\sqrt{2}\)
Để (d) // (d') thì
\(\left\{{}\begin{matrix}m^2-2=2\\m-1\ne-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\)
\(\Leftrightarrow m=2\) (nhận)
Vậy m = 2 thì (d) // (d')
Lời giải:
a) Để hai đường thẳng trên song song với nhau (không tính trùng) thì:
\(\left\{\begin{matrix} m^2+2=6\\ m\neq 2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m^2=4\\ m\neq 2\end{matrix}\right.\)
\(\Leftrightarrow m=-2\)
b) Hai đths cắt nhau tại một giao điểm $A$ trên trục tung tức là giao điểm đó có hoành độ bằng $0$. Hay \(x_A=0\)
\(A\in (y=(m^2+2)x+m)\Rightarrow y_A=(m^2+2)x_A+m=m\)
\(A\in (y=6x+2)\Rightarrow y_A=6x_A+2=2\)
\(\Rightarrow y_A=m=2\)
Vậy \(m=2\) . Mà với $m=2$ thì hai đt trùng nhau (không cắt nhau ) nên vô lý. Do đó không tồn tại $m$ thỏa mãn.
a: (d)'//(d) nên (d'): y=-3x+b
Thay x=1 và y=2 vào (d'), ta được:
b-3=2
=>b=5
=>y=-3x+5
b: PTHĐGĐ là;
mx^2+3x-1=0
Để (d) cắt (P) tại hai điểm phân biệt nằm về cùng một phía so với trục tung thì
(-3)^2-4*m*(-1)>0 và -1/m>0
=>m<0 và 9+4m>0
=>m<0 và m>-9/4
=>-9/4<m<0
Để hai đường thẳng song song mà không trùng nhau thì điều kiện cần và đủ là :
\(\hept{\begin{cases}m=1\\3m+2\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\m\ne-\frac{1}{3}\end{cases}\Leftrightarrow}m=1}\)
để (d) song song zới đường thẳng (d')
=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)
b)phương trình hoành độ giao điểm của (d) zà (P)
\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)
ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)
để d cắt P tại hai điểm phân biệt
=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)
lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)
để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)
từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương
Vì (d)//y=x+2 nên a-2=1
hay a=3
Vậy: (d): y=x+b
Thay x=-2 và y=-1 vào (d), ta được:
b-2=-1
hay b=1
Để đường thẳng \(y=\left(m-2\right)x+k\) song song với đường thẳng \(y=5x-1.\)
\(\Rightarrow\left\{{}\begin{matrix}m-2=5.\\k\ne-1.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=7.\\k\ne-1.\end{matrix}\right.\)
Đường thẳng \(y=\left(m-2\right)x+k\) đi qua điểm \(P\left(2;1\right).\)
\(\Rightarrow1=\left(7-2\right).2+k.\\ \Leftrightarrow1=10+k.\\ \Leftrightarrow k=-9\left(TM\right).\)
Vậy \(m=7;k=-9.\)
Để hai đường thẳng đã cho song song với nhau, điều kiện cần là m2 + 2 = 6 ⇔ m2 = 4 ⇔ m = 2 hoặc m = –2
Với m = 2, hai đường thẳng đã cho trở thành y = 6x + 2 và y = 6x + 2 (loại vì chúng trùng nhau)
Với m = –2, hai đường thẳng đã cho trở thành y = 6x – 2 và y = 6x + 2 (thỏa mãn)
Vậy m = –2 là giá trị cần tìm
Để \(y=\left(m^2+2\right)x+m\) song song với y=6x+2 thì
\(\left\{{}\begin{matrix}m^2+2=6\\m< >2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=4\\m\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\ne2\end{matrix}\right.\)
=>m=-2