K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2023

Để hai đường thẳng đã cho song song với nhau, điều kiện cần là m2 + 2 = 6 ⇔ m2 = 4 ⇔ m = 2 hoặc m = –2

Với m = 2, hai đường thẳng đã cho trở thành y = 6x + 2 và y = 6x + 2 (loại vì chúng trùng nhau)

Với m = –2, hai đường thẳng đã cho trở thành y = 6x – 2 và y = 6x + 2 (thỏa mãn)

Vậy m = –2 là giá trị cần tìm

Để \(y=\left(m^2+2\right)x+m\) song song với y=6x+2 thì

\(\left\{{}\begin{matrix}m^2+2=6\\m< >2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\m\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\ne2\end{matrix}\right.\)

=>m=-2

DT
12 tháng 11 2023

Bạn tham khảoloading... .

12 tháng 11 2023

Xét 2 đường thẳng: \(y=\left(m^2+2\right)x+m\left(d\right)\)

                               \(y=6x+2\left(d'\right)\)

Để \(\left(d\right)//\left(d'\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2+2=6\\m\ne2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne2\end{matrix}\right.\)

\(\Leftrightarrow m=-2\)

Vậy.......

7 tháng 1 2021

a) y = 2x - 3

Cho x = 0 \(\Rightarrow\) y = -3 \(\Rightarrow\) A(0; -3)

Cho y = 0 \(\Rightarrow\) \(x=\dfrac{3}{2}\) \(\Rightarrow\) B\(\left(\dfrac{3}{2};0\right)\)

undefined

b) ĐKXĐ của (d'): \(m^2-2\ne0\)

\(\Leftrightarrow m\ne\sqrt{2}\)\(m\ne-\sqrt{2}\)

Để (d) // (d') thì

\(\left\{{}\begin{matrix}m^2-2=2\\m-1\ne-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\)

\(\Leftrightarrow m=2\) (nhận)

Vậy m = 2 thì (d) // (d')

AH
Akai Haruma
Giáo viên
26 tháng 4 2018

Lời giải:

a) Để hai đường thẳng trên song song với nhau (không tính trùng) thì:

\(\left\{\begin{matrix} m^2+2=6\\ m\neq 2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m^2=4\\ m\neq 2\end{matrix}\right.\)

\(\Leftrightarrow m=-2\)

b) Hai đths cắt nhau tại một giao điểm $A$ trên trục tung tức là giao điểm đó có hoành độ bằng $0$. Hay \(x_A=0\)

\(A\in (y=(m^2+2)x+m)\Rightarrow y_A=(m^2+2)x_A+m=m\)

\(A\in (y=6x+2)\Rightarrow y_A=6x_A+2=2\)

\(\Rightarrow y_A=m=2\)

Vậy \(m=2\) . Mà với $m=2$ thì hai đt trùng nhau (không cắt nhau ) nên vô lý. Do đó không tồn tại $m$ thỏa mãn.

a: (d)'//(d) nên (d'): y=-3x+b

Thay x=1 và y=2 vào (d'), ta được:

b-3=2

=>b=5

=>y=-3x+5

b: PTHĐGĐ là;

mx^2+3x-1=0

Để (d) cắt (P) tại hai điểm phân biệt nằm về cùng một phía so với trục tung thì

(-3)^2-4*m*(-1)>0 và -1/m>0

=>m<0 và 9+4m>0

=>m<0 và m>-9/4

=>-9/4<m<0

NM
25 tháng 3 2022

Để hai đường thẳng song song mà không trùng nhau thì điều kiện cần và đủ là : 

\(\hept{\begin{cases}m=1\\3m+2\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\m\ne-\frac{1}{3}\end{cases}\Leftrightarrow}m=1}\)

28 tháng 3 2020

để (d) song song zới đường thẳng (d') 

=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)

b)phương trình hoành độ giao điểm của (d) zà (P)

\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)

ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)

để d cắt P tại hai điểm phân biệt 

=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)

lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)

để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)

từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương

Vì (d)//y=x+2 nên a-2=1

hay a=3

Vậy: (d): y=x+b

Thay x=-2 và y=-1 vào (d), ta được:

b-2=-1

hay b=1

4 tháng 3 2022

Để đường thẳng \(y=\left(m-2\right)x+k\)  song song với đường thẳng \(y=5x-1.\)

\(\Rightarrow\left\{{}\begin{matrix}m-2=5.\\k\ne-1.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=7.\\k\ne-1.\end{matrix}\right.\)

Đường thẳng \(y=\left(m-2\right)x+k\) đi qua điểm \(P\left(2;1\right).\)

\(\Rightarrow1=\left(7-2\right).2+k.\\ \Leftrightarrow1=10+k.\\ \Leftrightarrow k=-9\left(TM\right).\)

Vậy \(m=7;k=-9.\)