Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(d): VTPT là (m;1)
(d'): VTPT là (m;-4)
(d) vuông góc (d')
=>m^2-4=0
=>m=2 hoặc m=-2
=>Có 2 số nguyên m thỏa mãn
1.
\(\left(C\right):x^2+y^2-2x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)
Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)
Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)
Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)
\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)
\(\Leftrightarrow m=-1\pm\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)
2.
Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)
Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)
\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)
\(\Leftrightarrow m=-1\pm2\sqrt{2}\)
\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)
a: vecto AB=(6;-4)
PTTS là:
x=-6+6t và y=3-4t
b: Vì (d) vuông góc AB nên (d) có VTPT là (3;-2)
Phương trình(d) là:
3(x-3)+(-2)(y-2)=0
=>3x-9-2y+4=0
=>3x-2y-5=0
a: Vì (d)//x-4y+5=0 nên (d): x-4y+c=0
Thay x=1 và y=0 vào (d), ta được:
c+1=0
=>c=-1
=>x-4y-1=0
b: Vì (d) vuông góc x-4y+5=0
nên (d): 4x+y+c=0
Thay x=1 và y=0 vào (d), ta được:
c+4=0
=>c=-4
=>4x+y-4=0
Gọi M là giao điểm d và \(\Delta\) , tọa độ M là nghiệm:
\(\left\{{}\begin{matrix}2x-3y+1=0\\x+y-2=0\end{matrix}\right.\) \(\Rightarrow M\left(1;1\right)\)
\(\Delta'\) đối xứng \(\Delta\) qua d \(\Leftrightarrow\) d là phân giác góc tạo bởi \(\Delta\) và \(\Delta'\)
Gọi \(A\left(2;0\right)\) là điểm thuộc d
Phương trình \(\Delta'\) qua M có dạng:
\(a\left(x-1\right)+b\left(y-1\right)=0\Leftrightarrow ax+by-a-b=0\)
Áp dụng công thức k/c và tính chất phân giác:
\(d\left(A;\Delta'\right)=d\left(A;\Delta\right)\Leftrightarrow\frac{\left|2a-a-b\right|}{\sqrt{a^2+b^2}}=\frac{\left|2.2-3.0+1\right|}{\sqrt{2^2+3^2}}\)
\(\Leftrightarrow\sqrt{13}\left|a-b\right|=5\sqrt{a^2+b^2}\)
\(\Leftrightarrow13\left(a-b\right)^2=25\left(a^2+b^2\right)\)
\(\Leftrightarrow6a^2+13ab+6b^2=0\Rightarrow\left[{}\begin{matrix}3a=-2b\\2a=-3b\end{matrix}\right.\)
Chọn \(a=2\Rightarrow b=-3\) ; \(a=3\Rightarrow b=-2\)
Có hai đường thẳng \(\Delta'\) thỏa mãn: \(\left[{}\begin{matrix}2x-3y+1=0\\3x-2y-1=0\end{matrix}\right.\)
Ta có các vecto pháp tuyến: \(\overrightarrow{n_d}=\left(2;1\right);\overrightarrow{n_{d'}}=\left(1;3\right);\overrightarrow{n_{\Delta}}=\left(m;1\right)\)
a/ \(cos\left(d;d'\right)=\frac{\left|2.1+3.1\right|}{\sqrt{2^2+1^2}.\sqrt{1^2+3^2}}=\frac{\sqrt{2}}{2}\Rightarrow\left(d;d'\right)=45^0\)
b/ Để \(\Delta\) cùng tạo với d 1 góc 45 độ thì \(\Delta//d'\) hoặc \(\Delta\perp d'\)
\(\Rightarrow\left[{}\begin{matrix}\frac{m}{1}=\frac{1}{3}\\1.m+3.1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\frac{1}{3}\\m=-3\end{matrix}\right.\)
cho e hoi m/1 = 1/3 o dau vay a