K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Lời giải:

Gọi $I(a,b)$ là điểm thỏa mãn \(2\overrightarrow{IA}-\overrightarrow{IB}=\overrightarrow{0}\)

\(\Rightarrow 2(1-a, 2-b)-(-2-a, 1-b)=(0,0)\)

\(\Rightarrow \left\{\begin{matrix} 2(1-a)-(-2-a)=0\\ 2(2-b)-(1-b)=0\end{matrix}\right.\Rightarrow a=4; b=3\)

Vậy \(I(4,3)\)

\(|2\overrightarrow{MA}-\overrightarrow{MB}|=|2(\overrightarrow{MI}+\overrightarrow{IA})-(\overrightarrow{MI}+\overrightarrow{IB})|\)

\(=|\overrightarrow{MI}+(2\overrightarrow{IA}-\overrightarrow{IB})|=|\overrightarrow{MI}|\)

Để \(|2\overrightarrow{MA}-\overrightarrow{MB}|_{\min}\) thì \(|\overrightarrow{MI}|_{\min}\). Điều này xảy ra khi $M$ là chân đường cao kẻ từ $I$ đến trục hoành

\(\Rightarrow M=(4,0)\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Gọi \(M\left( {a;b} \right) \Rightarrow \overrightarrow {AM}  = \left( {a - 2;b - 3} \right)\)

Tọa độ vecto \(\overrightarrow {BC}  = \left( {4; - 2} \right)\)

Để \(\overrightarrow {AM{\rm{ }}}  = {\rm{ }}\overrightarrow {BC}  \Leftrightarrow \left\{ \begin{array}{l}a - 2 = 4\\b - 3 =  - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 6\\b = 1\end{array} \right.\)

Vậy để \(\overrightarrow {AM{\rm{ }}}  = {\rm{ }}\overrightarrow {BC} \) thì tọa độ điểm M là:\(M\left( {6;1} \right)\)

b) Gọi \(N\left( {x,y} \right) \Rightarrow \overrightarrow {NC}  = \left( {3 - x, - 1 - y} \right)\)và \(\overrightarrow {AN}  = \left( {x - 2,y - 3} \right)\)

Do N là trung điểm AC nên \(\overrightarrow {AN}  = \overrightarrow {NC}  \Leftrightarrow \left\{ \begin{array}{l}x - 2 = 3 - x\\y - 3 =  - 1 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{5}{2}\\y = 1\end{array} \right.\) . Vậy \(N\left( {\frac{5}{2},1} \right)\)

Ta có: \(\overrightarrow {BN} {\rm{ }} = \left( {  \frac{7}{2};0} \right)\) và \(\overrightarrow {NM}  = \left( {\frac{{ 7}}{2};0} \right)\). Vậy \(\overrightarrow {BN} {\rm{ }} = {\rm{ }}\overrightarrow {NM} \)

NV
2 tháng 1

\(\overrightarrow{AB}=\left(-6;-3\right)=-3\left(2;1\right)\Rightarrow\) đường thẳng AB nhận \(\left(2;1\right)\) là 1 vtcp

Phương trình tham số đường thẳng AB có dạng: \(\left\{{}\begin{matrix}x=5+2t\\y=4+t\end{matrix}\right.\)

Do M thuộc AB nên tọa độ M có dạng \(M\left(5+2t;4+t\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-2t;-t\right)\\\overrightarrow{MC}=\left(-2-2t;-6-t\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+\overrightarrow{MC}=\left(-2-4t;-6-2t\right)\)

Đặt \(T=\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\sqrt{\left(-2-4t\right)^2+\left(-6-2t\right)^2}=\sqrt{20\left(t+1\right)^2+20}\ge\sqrt{20}\)

Dấu "=" xảy ra khi \(t+1=0\Rightarrow t=-1\Rightarrow M\left(3;3\right)\)

2 tháng 1 2022

a) \(\overrightarrow{AB}\)=(-1-2;2-1)

<=>\(\overrightarrow{AB}\)(-3;1)

b) ta có:

D(x;y)\(\left\{{}\begin{matrix}3\left(-3\right)-2\left(x-\left(-1\right)\right)+x-3=0\\3.1-2\left(y-2\right)+y-4=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}-9-2x-2+x-3=0\\3-2y+4+y-4=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}-x-14=0\\-y+3=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=-14\\y=3\end{matrix}\right.\)

vậy D(-14;3)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Khoảng cách từ gốc tọa độ \(O\left( {0;0} \right)\) đến điểm \(M\left( {3;4} \right)\) trong mặt phẳng tọa độ Oxy là:

\(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{3^2} + {4^2}}  = 5\)

b) Với hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy, ta có:\(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \)

22 tháng 3 2022

xB=2xI-xA=2.2-(-1)=5.

yB=2yI-yA=2.3-(4)=2.

B(5;2).