Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-x;3-y\right)\\\overrightarrow{MB}=\left(4-x;-y\right)\\\overrightarrow{MC}=\left(2-x;-5-y\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=\left(x-1;y+18\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+18=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-18\end{matrix}\right.\)
\(\Rightarrow M\left(1;-18\right)\)
tại sao
Q=\(2\sqrt{\left(9-3m\right)^2}...\)
chuyển xuống thành \(\sqrt{\left(18-6m\right)^2...}\)
sao không phải là nhân 4 ở trong mài
vì \(2=\sqrt{4}\), vậy thì phải nhân 4 chứ
Do M thuộc Ox, gọi tọa độ M có dạng \(M\left(m;0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-m;-4\right)\\\overrightarrow{MB}=\left(4-m;5\right)\\\overrightarrow{MC}=\left(-m;-9\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}+2\overrightarrow{MB}=\left(9-3m;6\right)\\\overrightarrow{MB}+\overrightarrow{MC}=\left(4-2m;-4\right)\end{matrix}\right.\)
\(Q=2\sqrt{\left(9-3m\right)^2+6^2}+3\sqrt{\left(4-2m\right)^2+\left(-4\right)^2}\)
\(=\sqrt{\left(6m-18\right)^2+12^2}+\sqrt{\left(12-6m\right)^2+12^2}\)
\(=\sqrt{\left(18-6m\right)^2+12^2}+\sqrt{\left(6m-12\right)^2+12^2}\)
\(Q\ge\sqrt{\left(18-6m+6m-12\right)^2+\left(12+12\right)^2}=6\sqrt{17}\)
\(\Rightarrow a-b=-11\)
a.
Gọi G là trọng tâm tam giác ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)
\(=\left|3\overrightarrow{MG}\right|=3\left|\overrightarrow{MG}\right|\)
\(\Rightarrow T_{min}\) khi và chỉ khi \(MG_{min}\Rightarrow MG=0\) hay M trùng G
Theo công thức trọng tâm: \(\left\{{}\begin{matrix}x_M=\dfrac{2-1+6}{3}=\dfrac{7}{3}\\y_M=\dfrac{3-1+0}{3}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{7}{3};\dfrac{2}{3}\right)\)
b.
Tương tự câu a, ta có \(T=3\left|\overrightarrow{MG}\right|\) đạt min khi MG đạt min
\(\Rightarrow\) M là hình chiếu vuông góc của G lên Ox
Mà \(G\left(\dfrac{7}{3};\dfrac{2}{3}\right)\Rightarrow M\left(\dfrac{7}{3};0\right)\)
c.
Do M thuộc Ox nên tọa độ có dạng: \(M\left(m;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(2-m;3\right)\\\overrightarrow{MB}=\left(-1-m;-1\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{u}=\left(3m+6;7\right)\)
\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\left(3m+6\right)^2+7^2}\ge\sqrt{0+7^2}=7\)
Dấu "=" xảy ra khi \(3m+6=0\Rightarrow m=-2\)
\(\Rightarrow M\left(-2;0\right)\)
Gọi \(M\left(m;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-m;1\right)\\\overrightarrow{MB}=\left(-2-m;4\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{MA}-2\overrightarrow{MB}=\left(m+5;-7\right)\)
\(\Rightarrow\left|\overrightarrow{MA}-2\overrightarrow{MB}\right|=\sqrt{\left(m+5\right)^2+49}\ge7\)
Dấu "=" xảy ra khi \(m+5=0\Leftrightarrow m=-5\) hay \(M\left(-5;0\right)\)
Cảm ơn rất nhìu ạ