Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý thôi nhé.
a) Có \(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{\left(\left(-1\right)-6\right)^2+\left(2-\left(-1\right)\right)^2}=\sqrt{58}\)
Tương tự như vậy, ta tính được AC, BC.
Tính góc: Dùng \(\cos A=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}\)
b) Chu vi thì bạn lấy 3 cạnh cộng lại.
Diện tích: Dùng \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)
c) Gọi \(H\left(x_H,y_H\right)\) là trực tâm thì \(\left\{{}\begin{matrix}AH\perp BC\\BH\perp AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\)
Sau đó dùng: \(\overrightarrow{u}\left(x_1,y_1\right);\overrightarrow{v}\left(x_2,y_2\right)\) thì \(\overrightarrow{u}.\overrightarrow{v}=x_1x_2+y_1y_2\) để lập hệ phương trình tìm \(x_H,y_H\)
Trọng tâm: Gọi \(G\left(x_G,y_G\right)\) là trọng tâm và M là trung điểm BC. Dùng \(\left\{{}\begin{matrix}x_M=\dfrac{x_B+x_C}{2}\\y_M=\dfrac{y_B+y_C}{2}\end{matrix}\right.\) để tìm tọa độ M.
Dùng \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\) để lập hpt tìm tọa độ G.
a: \(\overrightarrow{AB}=\left(-4;2\right)\)
\(\overrightarrow{BC}=\left(6;-3\right)\)
Vì \(\overrightarrow{BA}\cdot\overrightarrow{BC}=\overrightarrow{0}\) nên ΔABC vuông tại B
1: \(\overrightarrow{AB}=\left(-10;-5\right)\)
\(\overrightarrow{AC}=\left(-6;3\right)\)
\(\overrightarrow{BC}=\left(4;8\right)\)
Vì \(\overrightarrow{AC}\cdot\overrightarrow{BC}=0\) ΔABC vuông tại C
\(AC=\sqrt{\left(-6\right)^2+3^2}=3\sqrt{5}\)
\(BC=\sqrt{4^2+8^2}=4\sqrt{5}\)
Do đó: \(S_{ABC}=\dfrac{AC\cdot BC}{2}=\dfrac{3\sqrt{5}\cdot4\sqrt{5}}{2}=3\sqrt{5}\cdot2\sqrt{5}=30\)
a) Đường cao kẻ từ A của tam giác ABC là đường thẳng đi qua A và có vectơ pháp tuyến là \(\overrightarrow {BC} = \left( { - 5; - 1} \right)\) nên phương trình đường cao đó là:
\( - 5\left( {x - 1} \right) - 1\left( {y - 2} \right) = 0 \Leftrightarrow -5x - y + 7 = 0\)
Hay \( 5x + y - 7 = 0\)
b) Gọi M là trung điểm AC. Khi đó \(\left\{ \begin{array}{l}{x_M} = \frac{{{x_A} + {x_C}}}{2} = \frac{{1 + \left( { - 2} \right)}}{2} = - \frac{1}{2}\\{y_M} = \frac{{{y_A} + {y_C}}}{2} = \frac{{2 + \left( { - 1} \right)}}{2} = \frac{1}{2}\end{array} \right. \Rightarrow M\left( { - \frac{1}{2};\frac{1}{2}} \right)\)
Trung tuyến BM đi qua điểm \(B\left( {3;0} \right)\) nhận vectơ \(\overrightarrow {{u_{BM}}} = 2\overrightarrow {BM} = \left( { - 7;1} \right)\) là vectơ chỉ phương nên phương trình tham số của BM là \(\left\{ \begin{array}{l}x = 3 - 7t\\y = t\end{array} \right.\).
Gọi A ' x ; y . Ta có A A ' → = x − 4 ; y − 3 B C → = − 5 ; − 15 B A ' → = x − 2 ; y − 7 .
Từ giả thiết, ta có A A ' ⊥ B C B , A ' , C thang hang ⇔ A A ' → . B C → = 0 1 B A ' → = k B C → 2 .
1 ⇔ − 5 x − 4 − 15 y − 3 = 0 ⇔ x + 3 y = 13.
2 ⇔ x − 2 − 5 = y − 7 − 15 ⇔ 3 x − y = − 1.
Giải hệ x + 3 y = 13 3 x − y = − 1 ⇔ x = 1 y = 4 ⇒ A ' 1 ; 4 .
Chọn C.
Gọi A’ (x; y).
Ta có A A ' → = x − 4 ; y − 3 B C → = − 5 ; − 15 B A ' → = x − 2 ; y − 7 .
Từ giả thiết, ta có A A ' ⊥ B C B , A ' , C thang hang ⇔ A A ' → . B C → = 0 1 B A ' → = k B C → 2 .
1 ⇔ − 5 x − 4 − 15 y − 3 = 0 ⇔ x + 3 y = 13.
2 ⇔ x − 2 − 5 = y − 7 − 15 ⇔ 3 x − y = − 1.
Giải hệ x + 3 y = 13 3 x − y = − 1 ⇔ x = 1 y = 4 ⇒ A ' 1 ; 4 .
Chọn C
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\x-2y-2=0\end{matrix}\right.\) \(\Rightarrow B\left(0;-1\right)\)
Gọi vtpt của đường thẳng CM (cũng là đường cao kẻ từ C) có tọa độ \(\left(a;b\right)\)
H là chân đường cao kẻ từ B
\(cos\widehat{HBC}=\dfrac{\left|1.1+1.\left(-2\right)\right|}{\sqrt{1^2+1^2}.\sqrt{1^2+\left(-2\right)^2}}=\dfrac{1}{\sqrt{10}}\)
\(\Rightarrow cos\widehat{MCB}=cos\widehat{HBC}=\dfrac{1}{\sqrt{10}}=\dfrac{\left|a+b\right|}{\sqrt{a^2+b^2}.\sqrt{1^2+1^2}}\)
\(\Leftrightarrow\sqrt{a^2+b^2}=\sqrt{5}\left|a+b\right|\Leftrightarrow a^2+b^2=5\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+5ab+2b^2=0\Leftrightarrow\left(a+2b\right)\left(2a+b\right)=0\)
Chọn \(\left(a;b\right)=\left[{}\begin{matrix}\left(2;-1\right)\\\left(1;-2\right)\end{matrix}\right.\) (trường hợp (1;-2) loại do song song BH)
\(\Rightarrow\) Phương trình đường cao kẻ từ C:
\(2\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-3=0\)
Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\2x-y-3=0\end{matrix}\right.\) \(\Rightarrow C\left(...\right)\)
Gọi N là trung điểm BC \(\Rightarrow\) tọa độ N
Tam giác ABC cân tại A \(\Rightarrow\) AN là trung tuyến đồng thời là đường cao
\(\Rightarrow\) Đường thẳng AN vuông góc BC \(\Rightarrow\) nhận (1;-1) là 1 vtpt và đi qua N
\(\Rightarrow\) Phương trình AN
Đường thẳng AB vuông góc CM nên nhận (1;2) là 1 vtpt
\(\Rightarrow\) Phương trình AB (đi qua B và biết vtpt)
\(\Rightarrow\) Tọa độ A là giao điểm AB và AN
a) Ta có: \(\overrightarrow {{u_{BC}}} = \overrightarrow {BC} = \left( { - 5; - 3} \right) \Rightarrow \overrightarrow {{n_{BC}}} = \left( {3; - 5} \right)\) . Vậy phương trình tổng quát của đường thẳng BC là: \(3\left( {x - 3} \right) - 5\left( {y - 2} \right) = 0 \Leftrightarrow 3x - 5y + 1 = 0\).
Độ dài đường cao AK của tam giác \(ABC\) hạ từ đỉnh A là: \(AK = d\left( {A,BC} \right) = \frac{{\left| {3.1 - 0.5 + 1} \right|}}{{\sqrt {{3^2} + {{\left( { - 5} \right)}^2}} }} = \frac{4}{{\sqrt {34} }}\)
b) Ta có: \(\overrightarrow {BC} = \left( { - 5; - 3} \right) \Rightarrow BC = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 3} \right)}^2}} = \sqrt {34} \)
Diện tích tam giác ABC là: \({S_{ABC}} = \frac{1}{2}.AK.BC = \frac{1}{2}.\frac{4}{{\sqrt {34} }}.\sqrt {34} = 2\)