Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi z 1 = x + y i ; x , y ∈ ℝ .
Khi đó điểm biểu diễn số phức z 1 là M(x;y) thỏa mãn.
Do đó tập hợp các điểm biểu diễn số phức z 1
là đường tròn tâm I(3;0) bán kính R = 2
Ta có z 2 = i z 1 = i x + y i = - y + i x .
Khi đó tam giác MON vuông cân tại O.
M N = O M 2 nên MN nhỏ nhất
Û OM nhỏ nhất
Û M ≡ M ' (M’ là giao điểm của OI với đường tròn
về phía bên trái như hình vẽ).
Tức là M(1;0). Khi đó M N = 2 O M = 2 . 1 = 2
Lời giải:
Nếu gọi \(z=a+bi\Rightarrow w=\frac{1}{\overline{z}}=\frac{z}{|z|^2}=\frac{a+bi}{a^2+b^2}\)
Điểm \(M\) di động trên $(C)$ nên \((a+1)^2+(b-1)^2=2\)
\(\Rightarrow a^2+b^2=2b-2a\)
Từ đây ta có:
\(\frac{2a}{a^2+b^2}=\frac{2a}{2b-2a};\frac{2b}{a^2+b^2}=\frac{2b}{2b-2a}\Rightarrow \frac{2a}{a^2+b^2}-\frac{2b}{a^2+b^2}=-1\)
Tương đương với việc tập hợp các điểm biểu diễn số phức \(w\) nằm trên đường thẳng \(2x-2y+1=0\)
Đáp án A.