K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

ta dể dàng chứng minh đc \(DA\) là phân giác góc \(\widehat{EDF}\) (sử dụng tính chất của tứ giác nội tiếp)

từ đó có thể chứng minh được \(DB\) là phân giác của góc \(\widehat{FDG}\) (\(\widehat{FDB}=\widehat{BDG}\) vì cùng phụ \(\dfrac{1}{2}\widehat{EDF}\))

\(\Rightarrow\) \(G\) đối sứng với \(F\) qua \(BC\) \(\Rightarrow\widehat{CGB}=90^o\)

đặc \(C\left(x_c;y_c\right)\) \(\Rightarrow\overrightarrow{CG}\left(2-x_c;-6-y_c\right)\)\(\overrightarrow{BG}\left(6;-2\right)\)

ta có \(\overrightarrow{CG}\perp\overrightarrow{BG}\) (\(\widehat{CGB}=90^o\))

\(\Rightarrow6\left(2-x_c\right)-2\left(-6-y_C\right)=0\) \(\Leftrightarrow-6x_c+2y_c=-24\) (1)

(1) \(C\in d\) \(\Rightarrow\) hpt : \(\left\{{}\begin{matrix}-6x_c+2y_c=-24\\2x_c+y_c-8=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_c=4\\y_c=0\end{matrix}\right.\) \(\Rightarrow C\left(4;0\right)\)

đặc \(I\)\(CB\cap FG\) có tọa độ là \(I\left(x_i;y_i\right)\)

\(\Rightarrow\overrightarrow{GI}\left(x_i-2;y_i+6\right)\)\(\overrightarrow{BC}\left(8;4\right)\)

ta có : \(\overrightarrow{BC}\perp\overrightarrow{GI}\) \(\Rightarrow8\left(x_i-2\right)+4\left(y_i+6\right)\Leftrightarrow8x_i+4y_i=-8\) (2)

ta có : \(\overrightarrow{BI}\left(x_i+4;y_i+4\right)\)\(\overrightarrow{BI}\uparrow\uparrow\overrightarrow{BC}\)

\(\Rightarrow\dfrac{8}{x_i+4}=\dfrac{4}{y_i+4}\Leftrightarrow-4x_i+8y_i=-16\) (3)

từ (2) với (3) ta có hpt : \(\left\{{}\begin{matrix}8x_i+4y_i=-8\\-4x_i+8y_i=-16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_i=0\\y_i=-2\end{matrix}\right.\) \(\Rightarrow I\left(0;-2\right)\)

đặc \(F\left(x_f;y_f\right)\)

ta có : \(I\) là trung điểm \(FG\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x_f+2}{2}=0\\\dfrac{y_f-6}{2}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_f=-2\\y_f=2\end{matrix}\right.\) \(\Rightarrow F\left(-2;2\right)\) \(\Rightarrow\) \(\overrightarrow{FC}\left(6;-2\right)\)

ta có phương trình đường thẳng \(AB\) là phương trình của đường thẳng đi qua \(B\left(-4;-4\right)\) và nhận \(\overrightarrow{FC}\left(6;-2\right)\) làm vectơ pháp tuyến

\(\Rightarrow6\left(x+4\right)-2\left(y+4\right)=0\) \(\Leftrightarrow6x-2y+16=0\)

vậy phương trình của cạnh \(AB\)\(6x-2y+16=0\)

17 tháng 7 2018

Gợi ý: Gọi H là trực tâm tam giác ABC. Dễ dàng chứng minh được AD là phân giác góc EDF.

=> BD là phân giác góc FDG.

=> FG đối xứng với nhau qua BC.

=> BG vuông góc GC

Vẽ đường GC tìm được tọa độ của C

Vẽ đường BC.

Gọi I là giao điểm của FG và BC tìm tọa độ của I có I rồi tìm được tọa độ của F có F thì vẽ được đường thẳng AB.

15 tháng 7 2016

 Nối BM cắt AC tại N,ta chứng minh được BM vuông góc AC và BM=AC .tìm được N,tỷ lệ AN/AC=1/5.NM/BM=3/5 => 3AN=MN.tìm đc A,có các tỷ lệ lúc nãy tìm đc B,C.

Mình tính được : A(3;-3).B(1;-3).C(1;1)

28 tháng 11 2021

Tham khảo!

 

Gợi ý: Gọi H là trực tâm tam giác ABC. Dễ dàng chứng minh được AD là phân giác góc EDF.

=> BD là phân giác góc FDG.

=> FG đối xứng với nhau qua BC.

=> BG vuông góc GC

Vẽ đường GC tìm được tọa độ của C

Vẽ đường BC.

Gọi I là giao điểm của FG và BC tìm tọa độ của I có I rồi tìm được tọa độ của F có F thì vẽ được đường thẳng AB.

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

NV
21 tháng 3 2021

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\x-2y-2=0\end{matrix}\right.\) \(\Rightarrow B\left(0;-1\right)\)

Gọi vtpt của đường thẳng CM (cũng là đường cao kẻ từ C) có tọa độ \(\left(a;b\right)\)

H là chân đường cao kẻ từ B

\(cos\widehat{HBC}=\dfrac{\left|1.1+1.\left(-2\right)\right|}{\sqrt{1^2+1^2}.\sqrt{1^2+\left(-2\right)^2}}=\dfrac{1}{\sqrt{10}}\)

\(\Rightarrow cos\widehat{MCB}=cos\widehat{HBC}=\dfrac{1}{\sqrt{10}}=\dfrac{\left|a+b\right|}{\sqrt{a^2+b^2}.\sqrt{1^2+1^2}}\)

\(\Leftrightarrow\sqrt{a^2+b^2}=\sqrt{5}\left|a+b\right|\Leftrightarrow a^2+b^2=5\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+5ab+2b^2=0\Leftrightarrow\left(a+2b\right)\left(2a+b\right)=0\)

Chọn \(\left(a;b\right)=\left[{}\begin{matrix}\left(2;-1\right)\\\left(1;-2\right)\end{matrix}\right.\) (trường hợp (1;-2) loại do song song BH)

\(\Rightarrow\) Phương trình đường cao kẻ từ C:

\(2\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-3=0\)

Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\2x-y-3=0\end{matrix}\right.\) \(\Rightarrow C\left(...\right)\)

Gọi N là trung điểm BC \(\Rightarrow\) tọa độ N

Tam giác ABC cân tại A \(\Rightarrow\) AN là trung tuyến đồng thời là đường cao

\(\Rightarrow\) Đường thẳng AN vuông góc BC \(\Rightarrow\) nhận (1;-1) là 1 vtpt và đi qua N

\(\Rightarrow\) Phương trình AN

Đường thẳng AB vuông góc CM nên nhận (1;2) là 1 vtpt

\(\Rightarrow\) Phương trình AB (đi qua B và biết vtpt)

\(\Rightarrow\) Tọa độ A là giao điểm AB và AN

Tọa độ A là:

2x-3y+12=0 và 2x+3y=0

=>x=-3 và y=2

Tọa độ M, M là trung điểm của BC là M(x;-3x/2)

Phương trình BC sẽ là: 3x+2y+c=0

Thay x=4 và y=-1 vào BC, ta được:

3*4+2*(-1)+c=0

=>c+12-2=0

=>c=-10

=>BC: 3x+2y-10=0

=>B(x;5-1,5x); y=5-1,5x

B(x;5-1,5x); C(4;-1); M(x;-3x/2)

Theo đề, ta có: x=(4+x)/2 và -1,5x=(5x-1)/2

=>2x=x+4 và -3x=5x-1

=>x=4 và -8x=-1(loại)

=>Không có điểm B nào thỏa mãn

a: \(\overrightarrow{AB}=\left(-11;11\right);\overrightarrow{AC}=\left(-2;6\right)\)

Vì -11/-2<>11/6

nên A,B,C thẳng hàng

ABCD là hình bình hành

=>vecto DC=vecto AB

=>5-x=-11 và 4-y=11

=>x=16 và y=-7

b: \(\overrightarrow{BH}=\left(x+4;y-9\right)\); vecto BC=(9;-5); vecto AH=(x-7;y+2)

Theo đề, ta có: 

(x+4)/9=(y-9)/-5 và 9(x-7)+(-5)(y+2)=0

=>-5x-20=9y-81 và 9x-63-5y-10=0

=>-5x-9y=-61 và 9x-5y=73

=>x=481/53; y=92/53

c: Vì (d') vuông góc (d) nên (d'): 4x+3y+c=0

Thay x=-2 và y=3 vào (d'), ta được:

c+4*(-2)+3*3=0

=>c=-1

26 tháng 4 2020

ai biêt

21 tháng 3 2021

undefined

16 tháng 5 2016

ta có vecto HK =(-1,2) n pháp tuyến của HK (2,1) Ptdt HK : 2x+y-2=0

vì HK vuông AC nên AC có n pháp tuyến là (1,-2) qua K nên PtdtAC : x-2y+4=0

A thuộc Ac nên A(2a-4,a) . M là trung điểm AB nên B(10-2a,2-a) . B thuộc HK nên ta có 2(10-2a)+(2-a)-2=0 <=> a=4. Vây A(4,4) , B(2,-2)

vecto AB(-2,-6) nên n pháp tuyến của AB (6,-2) Ptdt AB : 3x-y-8=0

vecto AH (-3,-4) nên n pháp tuyến AH (4,-3) PtdtAH : 4x-3y-4=0

có AH vuông BC nên n pháp tuyến BC là ( 3,4) .qua B . Ptdt BC là 3x+4y+2=0