K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2018

Điểm A(x;y) nằm bên trong (kể cả trên cạnh) của 

Có 101 cách chọn x, 11 cách chọn y. Do đó số phần tử của không gian mẫu tập hợp các điểm có tọa độ nguyên nằm trên hình chữ nhật OMNP là n( Ω ) = 101 x 11

Gọi X là biến cố: “Các điểm A(x;y) thỏa mãn x + y ≤ 90”.

Vậy xác suất cần tính là

25 tháng 1 2018

Đáp án D

Số phần tử của không gian mẫu tập hợp các điểm có tọa độ nguyên nằm trên hình chữ nhật OMNP là

n Ω = 101 x 11

Khi đó có 91 + 90 + . . . + 81 = 946  cặp (x;y) thỏa mãn

Vậy xác suất cần tính là

1 tháng 12 2018

11 tháng 7 2019

Chọn B                 

Ta có 

Do đó

Ta cũng có  => n(A) = 8

Vậy xác suất của biến cố A là P(A) =  8 21

9 tháng 12 2017

Chọn C

Lời giải. Số các điểm có tọa độ nguyên thuộc hình chữ nhật là 7.3 = 21 điểm vì

Để con châu chấu đáp xuống các điểm M(x,y) có x + y < 2

thì con châu chấu sẽ nhảy trong khu vực hình thang BEIA

Để M(x,y) có tọa độ nguyên thì

= Nếu x ∈ - 2 ; - 1 thì y ∈ 0 ; 1 ; 2

⇒ có 6 điểm

= Nếu x = 0 thì  y ∈ 0 ; 1 ⇒  có 2 điểm

= Nếu x = 1 ⇒ y = 0 ⇒ có 1 điểm

⇒  có tất cả 6 + 2 +1 = 9 điểm thỏa mãn

Vậy xác suất cần tính  P = 9 21 = 3 7

30 tháng 8 2019

Đáp án A

Để con châu chấu đáp xuống các điểm M(x; y) x + y < 2 thì con châu chấu sẽ nhảy trong khu vực hình thang BEIA

Để M(x; y) có tọa độ nguyên thì x ∈ - 2 ;   - 1 ;   0 ;   1 ;   2 ,   y ∈ { 0 ;   1 ;   2 }  

Nếu x ∈ - 2 ;   - 1 thì y ∈ { 0 ;   1 ;   2 } có 2.3 = 6 điểm

Nếu x = 0 thì y ∈ { 0 ;   1 }  có 2 điểm

Nếu x =1 => y = 0 => có 1 điểm

=> có tất cả 6 + 2 + 1 = 9 điểm. Để con châu chấu nhảy trong hình chữ nhật mà đáp xuống các điểm có tọa độ nguyên thì x ∈ - 2 ;   - 1 ;   0 ;   1 ;   2 ;   3 ;   4 ,   y ∈ { 0 ;   1 ;   2 } . Số các điểm M(x; y) có tọa độ nguyên là: 7.3 = 21 điểm. Xác suất cần tìm là:  P = 9 21 = 3 7 .

8 tháng 8 2017




26 tháng 2 2019

Đáp án C

Từ 8 số đã cho có thể lập được : số có3 chữ số

Số cần chọn có dạng a b c ¯ trong đó a ≤ b ≤ c

TH1: a < b < c

Chọn ra 3 số thuộc tập  1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7

ta được 1 số thỏa mãn

Do đó có  C 7 3 = 35 số

TH2:a = b < c có  C 7 2 số thỏa mãn

TH3: a < b = c có  C 7 2  số thỏa mãn

TH4: a =b = c có  C 7 1 số thỏa mãn

Vậy có  C 7 3 + 2 C 7 2 + C 7 1 = 84

số thỏa mãn chữ số đứng sau luôn lớn hơn bằng chữ số đứng trước

Vậy xác suất cần tìm là:  P = 84 448 = 3 16

21 tháng 6 2018

Đáp án C

Từ 8 số đã cho có thể lập được: số có 3 chữ số.

Số cần chọn có dạng trong đó

TH1:

Chọn ra 3 số thuộc tập ta được 1 số thỏa mãn.

Do đó có số

TH2:

số thỏa mãn

TH3:

số thỏa mãn

TH4:

số thỏa mãn

Vậy có số thỏa mãn chữ số đứng sau luôn lớn hơn bằng chữ số đứng trước.

Vậy xác suất cần tìm là:

16 tháng 9 2018

Đáp án A.

Gọi số cần tìm có dạng a b c d  vì chia hết cho 6

⇒ d = { 2 , 4 , 6 , 8 } a + b + c + d : 3

Khi đó, chọn d có 4 cách chọn, b và c đều có 9 cách chọn (từ 1 → 9).

 +) Nếu a + b + c + d : 3 thì a = {3,6,9} => có 3 cách chọn a.

+) Nếu a + b + c + d : 3 dư 1 thì a = {2,5,8} => có 3 cách chọn a.

+) Nếu a + b + c + d : 3 dư 2 thì a = {1,4,7} => có 3 cách chọn a.

Suy ra a chỉ có 3 cách chọn => có 4.9.9.3 = 972 số chia hết cho 6.

Vậy xác suất cần tính là P =  972 9 4 = 4 27 .