Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{KM}=\left(\frac{16}{15};-\frac{8}{15}\right)\)//(2;−1)
Phương trình đường thẳng qua O và song song AB có dạng: x−y=0x−y=0
⇒⇒ Tọa độ M là nghiệm của hệ: {x+3y−6=0x−y=0{x+3y−6=0x−y=0 ⇒M(32;32)⇒M(32;32)
Phương trình đường thẳng BC qua M, nhận (1;1)(1;1) là 1 vtpt có dạng:
1(x−32)+1(y−32)=0⇔x+y−3=01(x−32)+1(y−32)=0⇔x+y−3=0
Tọa độ B là nghiệm của hệ: {x−y+5=0x+y−3=0{x−y+5=0x+y−3=0 ⇒B⇒B
M là trung điểm BC ⇒⇒ tọa độ C
O là trung điểm AC ⇒⇒ tọa độ A
O là trung điểm BD
AB đi qua E và vuông góc BC nên nhận (1;-1) là 1 vtpt
Phương trình AB:
\(1\left(x+1\right)-1\left(y-1\right)=0\Leftrightarrow x-y+2=0\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(-3;-1\right)\)
Đường thẳng d qua M và song song AB có pt:
\(1\left(x+1\right)-1\left(y+1\right)=0\Leftrightarrow x-y=0\)
Gọi N là giao điểm d và BC \(\Rightarrow N\) là trung điểm BC
Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x-y=0\\x+y-4=0\end{matrix}\right.\) \(\Rightarrow N\left(2;2\right)\Rightarrow C\left(7;5\right)\)
Đường thẳng AD qua M và song song BC có pt:
\(1\left(x+1\right)+1\left(y+1\right)=0\Leftrightarrow x+y+2=0\)
A là giao điểm AB và AD nên tọa độ là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+2=0\end{matrix}\right.\) \(\Rightarrow A\left(-2;0\right)\)
\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\) tọa độ D
B A K H C E I D
Ta có \(\widehat{AHC}=\widehat{AEC}=90^0\) nên 4 điểm A, H, C, E cùng thuộc đường tròn đường kính AC.
Gọi I là giao điểm của AC và BD
Ta có \(\widehat{HIE}=2\widehat{HAE}=2\left(180^0-\widehat{BCD}\right)\)
Các tứ giác AKED, AKHB nội tiếp nên \(\widehat{EKD}=\widehat{EAD}\) và \(\widehat{BKH}=\widehat{BAH}\)
Do đó \(\widehat{HKE}=180^0-\widehat{AKD}-\overrightarrow{BKH}=180^0-\overrightarrow{EAD}-\overrightarrow{BAH}=2\overrightarrow{HAE}=2\left(180^0-\overrightarrow{BCD}\right)=\overrightarrow{HIE}\)
Vậy tứ giác HKIE nội tiếp. Do đó I thuộc đường tròn (C) ngoại tiếp tam giác HKE
- Gọi \(C\left(c;c-3\right)\in d\left(c>0\right)\Rightarrow I\left(\frac{c-2}{2};\frac{c-4}{2}\right)\)
Do I thuộc (C) nên có phương trình :
\(c^2-c-2=0\Leftrightarrow c=2\) V c=-1 (loại c=-1) Suy ra \(C\left(2;-1\right);I\left(0;-1\right)\)
- Điểm E, H nằm trên đường tròn đường kính AC và đường tròn (C) nên tọa độ thỏa mãn hệ phương trình :
\(\begin{cases}x^2+y^2+x+4y+3=0\\x^2+\left(y+1\right)^2=4\end{cases}\) \(\Leftrightarrow\begin{cases}x=0;y=-3\\x=-\frac{8}{5};y=-\frac{11}{2}\end{cases}\)
- Vì H có hoành độ âm nên \(H\left(-\frac{8}{5};-\frac{11}{5}\right);E\left(0;-3\right)\) Suy ra \(AB:x-y+1=0;BC:x-3y-5=0\)
Tọa độ B thỏa mãn \(\begin{cases}x-y+1=0\\x-3y-5=0\end{cases}\) \(\Leftrightarrow B\left(-4;-3\right)\Rightarrow\overrightarrow{BA}=\left(2;2\right);\overrightarrow{BC}=\left(6;2\right)\Rightarrow\overrightarrow{BA}.\overrightarrow{BC}=16>0\)
Vì \(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow D\left(4;1\right)\)
Vậy \(B\left(-4;-3\right);C\left(2;-1\right);D\left(4;1\right)\)
A B C D H M N P
Kẻ MP//AB \(\left(P\in AH\right)\) \(\Rightarrow MP\perp AD\)
\(\Rightarrow P\) là trực tâm tam giác \(ADM\Rightarrow DP\perp AM\)
Mặt khác theo cách dựng, MP là đường trung bình tam giác HAB
\(\Rightarrow MP=\frac{1}{2}AB=\frac{1}{2}CD=ND\)
\(\Rightarrow MNDP\) là hình bình hành (2 cạnh đối MP, DN song song và bằng nhau)
\(\Rightarrow DP\perp MN\Rightarrow MN\perp AM\)
Do \(A\in d\Rightarrow A\left(a;4a+5\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(a-6;4a+2\right)\\\overrightarrow{NM}=\left(1;3\right)\end{matrix}\right.\)
\(\overrightarrow{MA}.\overrightarrow{NM}=0\Leftrightarrow a-6+3\left(4a+2\right)=0\Rightarrow a=0\Rightarrow A\left(0;5\right)\)
Gọi \(B\left(b;c\right)\Rightarrow\left\{{}\begin{matrix}H\left(12-b;6-c\right)\\\overrightarrow{AB}=\left(b;c-5\right)\end{matrix}\right.\) và \(\overrightarrow{MB}=\left(b-6;c-3\right)\)
\(\overrightarrow{AB}=2\overrightarrow{DN}\Rightarrow D\left(\frac{10-b}{2};\frac{5-c}{2}\right)\Rightarrow\overrightarrow{DM}=\left(\frac{b+2}{2};\frac{c+1}{2}\right)\)
Do D, M, B thẳng hàng \(\Rightarrow\frac{b+2}{2\left(b-6\right)}=\frac{c+1}{2\left(c-3\right)}\Rightarrow b=2c\) \(\Rightarrow\left\{{}\begin{matrix}D\left(5-c;\frac{5-c}{2}\right)\\\overrightarrow{AB}=\left(2c;c-5\right)\\\overrightarrow{AD}=\left(5-c;\frac{-c-5}{2}\right)\end{matrix}\right.\)
\(\overrightarrow{AB}.\overrightarrow{AD}=0\Leftrightarrow2c\left(5-c\right)-\left(c-5\right)\left(\frac{c+5}{2}\right)=0\) \(\Rightarrow\left[{}\begin{matrix}c=5\\c=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}B\left(10;5\right);D\left(0;0\right);C\left(10;0\right)\\B\left(-2;-1\right);D\left(6;3\right);C\left(4;-3\right)\end{matrix}\right.\)
//Dài quá, ko biết có cách ngắn hơn ko