Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Đ I : M(x;y) M’( – 4– x; 2– y)
=> 2 ( − 4 − x ) + 2 ( 2 − y ) − 7 = 0
⇒ ( d ' ) : 2 x + 2 y + 11 = 0
a) d 1 : 3x + 2y + 6 = 0
b) Giao của d và Δ là A(2;0). Lấy B(0; −3) thuộc d. Ảnh của B qua phép đối xứng của đường thẳng Δ là B′(5;2). Khi đó d' chính là đường thẳng AB′: 2x − 3y – 4 = 0
Giả sử M 1 = D I ( M ) và M ′ = Q O ; − 90 ο ( M 1 ) . Ta có
Thế (x;y) theo (x′;y′) vào phương trình d ta có:
3(y′ − 2) − (4 − x′) – 3 = 0 ⇔ x′ + 3y′ − 13 = 0
Vậy phương trình d’ là x + 3y – 13 = 0.
a) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua O.
Dùng biểu thức tọa độ của phép đối xứng qua gốc tọa độ ta có :
M′ = (2; −3), phương trình của d′: 3x – y – 9 = 0, phương trình của đường tròn (C′): x 2 + y 2 − 2 x + 6 y + 6 = 0 .
b) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua I .
Vì I là trung điểm của MM' nên M′ = (4;1)
Vì d' song song với d nên d' có phương trình 3x – y + C = 0.
Lấy một điểm trên d, chẳng hạn N(0; 9).
Khi đó ảnh của N qua phép đối xứng qua tâm I là N′(2; −5).
Vì N' thuộc d nên ta có 3.2 − (−5) + C = 0. Từ đó suy ra C = -11.
Vậy phương trình của d' là 3x – y – 11 = 0.
Để tìm (C'), trước hết ta để ý rằng (C) là đường tròn tâm J(−1; 3),
bán kính bằng 2. Ảnh của J qua phép đối xứng qua tâm I là J′(3; 1).
Do đó (C') là đường tròn tâm J' bán kính bằng 2. Phương trình của (C') là x − 3 2 + y − 1 2 = 4 .
Gọi M(x; y) tùy ý thuộc d, suy ra 3x – y + 2 = 0 (1)
Gọi M’(x’; y’) = ĐOy(M) ⇔
Thay vào (1), ta được : 3(-x’) – y’ + 2 = 0 ⇔ 3x’ + y’ – 2 = 0
Do đó, điểm M’ thuộc đường thẳng d’ : 3x + y – 2 = 0.
Vậy qua phép đối xứng trục Oy biến đường thẳng d thành đường thẳng d’: 3x + y- 2=0
Dùng công thức tọa độ của phép đối xứng tâm I(−2;1), ta có: M ′ = D 1 ( M )
Thế (x;y) vào phương trình d, ta có phương trình:
d′: 2(−4 − x′) − (2 − y′) + 6 = 0
⇒ d′: 2x′ − y′ + 4 = 0.
Đổi kí hiệu, ta có phương trình: d′: 2x – y + 4 = 0