K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 6 2020

\(AB\perp BC\Rightarrow AB\perp d\Rightarrow\) B là hình chiếu vuông góc của A lên d

Phương trình đường thẳng d' qua A và vuông góc d có dạng:

\(2\left(x-0\right)+1\left(y-2\right)=0\Leftrightarrow2x+y-2=0\)

B là giao d và d' nên tọa độ: \(\left\{{}\begin{matrix}x-2y+2=0\\2x+y-2=0\end{matrix}\right.\) \(\Rightarrow B\left(\frac{2}{5};\frac{6}{5}\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(\frac{2}{5};-\frac{4}{5}\right)\Rightarrow AB=\frac{2\sqrt{5}}{5}\Rightarrow BC=\frac{\sqrt{5}}{5}\)

Gọi \(C\left(2c-2;c\right)\Rightarrow\overrightarrow{BC}=\left(2c-\frac{12}{5};c-\frac{6}{5}\right)\)

\(\Rightarrow\left(2c-\frac{12}{5}\right)^2+\left(c-\frac{6}{5}\right)^2=\left(\frac{\sqrt{5}}{5}\right)^2\)

\(\Leftrightarrow5c^2-12c+7=0\Rightarrow\left[{}\begin{matrix}c=1\\c=\frac{7}{5}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}C\left(0;1\right)\\C\left(\frac{4}{5};\frac{7}{5}\right)\end{matrix}\right.\)

B thuộc d nên B(2y-2;y)

C thuộc d nên C(x;0,5x+1)

vecto BA=(2y-2;y-2)

vecto BC=(x-2y;0,5x+1-y)

Theo đề, ta có: (2y-2)(x-2y)+(y-2)(0,5x+1-y)=0 và 2y-2=2x-4y và y-2=2(0,5x+1-y)

=>2y-2x=-2 và y-2=x+2-2y

=>-x+y=-1 và x+2-2y-y+2=0

=>x-y=1 và x-3y=-4

=>x=3,5 và y=2,5 và (2y-2)(x-2y)+(y-2)(0,5x+1-y)=0

=>\(\left(x,y\right)\in\varnothing\)

 

13 tháng 3 2023

Ta có B(a;2-a) ; C(b;8-b)

Để tam giác ABC vuông cân tại A

\(\left\{{}\begin{matrix}\overrightarrow{AC}.\overrightarrow{AB}=\overrightarrow{0}\\\overrightarrow{AC}=\overrightarrow{AB}\end{matrix}\right.\) bạn thay vào giải hpt bằng p2 thế nhé 

13 tháng 3 2023

nó ra pt bậc 4 bạn ơi🥲

NV
26 tháng 12 2022

Do C thuộc trục tung nên tọa độ có dạng \(C\left(0;c\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-4;-1\right)\\\overrightarrow{AC}=\left(-1;c-2\right)\end{matrix}\right.\)

Do tam giác ABC vuông tại A \(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\)

\(\Rightarrow4-\left(c-2\right)=0\Rightarrow c=6\)

\(\Rightarrow C\left(0;6\right)\)

\(\Rightarrow\overrightarrow{AC}=\left(-1;4\right)\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{\left(-4\right)^2+\left(-1\right)^2}=\sqrt{17}\\AC=\sqrt{\left(-1\right)^2+4^2}=\sqrt{17}\end{matrix}\right.\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{17}{2}\)

NV
26 tháng 12 2022

Do C thuôc trục hoành nên tọa độ có dạng \(C\left(c;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(c+2;-4\right)\\\overrightarrow{BC}=\left(c-8;-4\right)\end{matrix}\right.\)

Do tam giác ABC vuông tại C \(\Rightarrow\overrightarrow{AC}.\overrightarrow{BC}=0\)

\(\Rightarrow\left(c+2\right)\left(c-8\right)+16=0\)

\(\Rightarrow c^2-6c=0\Rightarrow\left[{}\begin{matrix}c=0\\c=6\end{matrix}\right.\)

Vậy có 2 điểm C thỏa mãn là \(C\left(0;0\right)\) và \(C\left(6;0\right)\)

15 tháng 2 2019

19 tháng 8 2018

Ta có C ∈ O x nên C(c; 0) và  C A → = − 2 − c ; 4 C B → = 8 − c ; 4 .

Tam giác ABC vuông tại C nên  C A → . C B → = 0 ⇔ − 2 − c . 8 − c + 4.4 = 0

⇔ c 2 − 6 c = 0 ⇔ c = 6 → C 6 ; 0 c = 0 → C 0 ; 0 .  

Chọn B.