K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2019

Việc lập một hình chữ nhật được thực hiện bởi hai bước:

      + Chọn 2 đường thẳng trong số 4 đường thẳng.

      Có: Giải bài 7 trang 55 sgk Đại số 11 | Để học tốt Toán 11 cách chọn.

      + Chọn 2 đường thẳng trong số 5 đường thẳng vuông góc

      Có: Giải bài 7 trang 55 sgk Đại số 11 | Để học tốt Toán 11 cách chọn.

⇒ Theo quy tắc nhân: Có 10.6 = 60 (cách lập hình chữ nhật).

3 tháng 4 2017

Để lập được một hình chữ nhât, phải thực hiện liên tiếp hai hành động sau đây:

Hành động 1: Chọn 2 đường thẳng (không phân biệt thứ tự) từ nhóm 4 đường thẳng song song đã cho. Số các cách để thực hiện hành động này là C24 = = 6 (cách)

Hành động 2: Chọn 2 đường thẳng (không phân biệt thứ tự) từ nhóm 5 đường thẳng đã cho, vuông góc với 4 đường thẳng song song. Số các cách để thực hiện hành động này là

C25 = = 10 (cách).

Theo quy tắc nhân suy ra số các cách để lập thành một hình chữ nhật từ các đường thẳng đã cho là 6 . 10 = 60 (cách).

Qua trên suy ra từ các đường thẳng đã cho có thể lập được 60 hình chữ nhât.



1 tháng 3 2019

Đáp án C 

Muốn thành một hình bình hành thì cần lấy 2 đường thẳng của nhóm 2017 cắt với 2 đường thẳng của nhóm 2018. Chọn 2 đường thẳng trong nhóm 2017 có cách chọn. Chọn 2 đường thẳng trong nhóm 2018 có cách chọn. Vậy theo quy tắc nhân có cách chọn

31 tháng 12 2018

a) Đúng

b) Đúng

c) Sai

d) Sai

e) Sai

f) Đúng

6 tháng 4 2018

Không vì trái với định lí ( a // b thì a và b không cắt nhau)

Số phát biểu đúng 1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho 2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy 3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường...
Đọc tiếp

Số phát biểu đúng

1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho

2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy

3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường thẳng đó hoặc trùng với một trong 2 đường thẳng đó

4.     2 đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau

5.     Nếu đường thẳng d không nằm trong mặt phẳng ( ) và d song song với đường thẳng d’ nằm trong ( ) thì d song song với ( )

6.     Cho đường thẳng a song song với mặt phẳng . Nếu mặt phẳng  chứa a và cắt  theo giao tuyến b thì b song song với a

7.     Nếu 2 mặt phẳng cùng song song với 1 đường thẳng thì giao tuyến của chúng ( nếu có ) cũng song song với đường thẳng đó

     8. Cho 2 đường thẳng chéo nhau. Có vô số mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.

A. 8

B. 7

C. 6

D. 5

1
5 tháng 2 2018

Đáp án C

2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau

8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia

29 tháng 9 2018

a) Đúng

b) Đúng

c) Sai (vì a có thể nằm trong mp(α), xem hình vẽ)

d) Sai, chẳng hạn hai mặt phẳng (α) và (β) cùng đi qua đường thẳng a và a ⊥ mp(P) nên (α) và (β) cùng vuông góc với mp(P) nhưng (α) và (β) cắt nhau.

e) Sai, chẳng hạn a và b cùng ở trong mp(P) và mp(P) ⊥ d. Lúc đó a và b cùng vuông góc với d nhưng a và b có thể không song song nhau.

23 tháng 8 2023

Qua mỗi điểm M trong không gian, có duy nhất một đường thẳng song song hoặc trùng với đường thẳng ℓ. Đường thẳng đó và mặt phẳng (P) có 1 điểm chung.

11 tháng 8 2019

Đáp án C

Gọi là 4 đường thẳng song song với BC.

Gọi là 5 đường thẳng song song với AC.

Gọi là 6 đường thẳng song song với AB.

Cứ 2 đường thẳng song song và hai đường thẳng không song song tạo thành một hình thang.

Vậy số hình thành là 

19 tháng 12 2017

Đáp án B

Các cách xác định mặt phẳng đúng: 2; 4 ; 8

1. Đi qua 3 điểm phân biệt không thẳng hàng

3. Trong trường hợp 2 đường thẳng chéo nhau thì không thể xác định được mặt phẳng

5. Song song với 2 đường thẳng cắt nhau  Có vô số mặt phẳng như vậy.

Phương pháp xác định mặt phẳng chỉ đúng khi mặt phẳng này đi qua 1 điểm  cho trước

6. Song song với 2 đường thẳng chéo nhau  Có vô số mặt phẳng như vậy

Phương pháp xác định mặt phẳng chỉ đúng khi mặt phẳng này đi qua 1 điểm  cho trước

7. Đi qua 1 điểm và song song với một đường thẳng cho trước.  Có vô số mặt phẳng như vậy