Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mặt phẳng là mặt phẳng đi qua A(0;1;2) và có VTPT
Khi đó
• (P) vuông góc với α nên: a - b + c = 0
• (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất khi và chỉ khi khoảng cách từ tâm mặt cầu đến mặt phẳng (P) là lớn nhất. Ta có
Dấu "x" xảy ra
Chọn c = -1, suy ra
Khi đó
Chọn C.
Chọn A
Tìm tâm I và bán kính R của mặt cầu. Tâm J của đường tròn là hình chiếu vuông góc của I trên mặt phẳng α . Bán kính của đường tròn r = R 2 - d 2 với d là khoảng cách từ I đến .
Đáp án D
S : x − 1 2 + y + 2 2 + z − 1 2 2 = 21 4 − m ⇒ I 1 ; − 2 ; 1 2 ; R 2 = 21 4 − m
Do đó:
d = d I ; P = 2 − 4 − 1 2 − 8 3 = 7 2 ⇒ R 2 = 2 2 + 7 2 2 ⇒ m = − 11
Mặt cầu (S) có tâm là O(1;0;-2) và bán kính R = 4
Gọi I là hình chiếu của O trên mặt phẳng α khi đó
Gọi r là bán kính đường tròn (T) khi đó
Chọn đáp án D
Giả sử mặt cầu (S) có tâm I m ; 0 ; 0 và bán kính là R (do I ∈ O x ).
Ta có
Từ đó suy ra
Để có đúng một mặt cầu (S) thỏa mãn yêu cầu khi và chỉ khi phương trình (*) có đúng một nghiệm m, tức là
Đáp án là C