Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tìm phương trình mặt phẳng (P) và tính bán kính đường tròn giao tuyến, ta cần tìm điểm giao giữa mặt cầu (S) và đường thẳng Δ. Đầu tiên, ta thay đổi phương trình đường thẳng Δ từ phương trình chính tắc sang phương trình tham số.
Phương trình tham số của đường thẳng Δ là: x = t y = 1 + t z = 1 + 2t
Tiếp theo, ta thay các giá trị x, y, z vào phương trình mặt cầu (S) để tìm điểm giao: (t)2 + (1 + t + 1)2 + (1 + 2t - 2)2 = 10 t2 + (t + 2)2 + (2t - 1)2 = 10 t2 + t2 + 4t + 4 + 4t2 - 4t + 1 - 10 = 0 6t2 + 4t - 5 = 0
Giải phương trình trên, ta tìm được t = 1/2 và t = -5/6. Thay t vào phương trình tham số của Δ, ta có các điểm giao là: Điểm giao thứ nhất: (1/2, 3/2, 5/2) Điểm giao thứ hai: (-5/6, 1/6, -1/6)
Tiếp theo, ta tìm phương trình mặt phẳng (P) đi qua hai điểm giao này. Sử dụng công thức phương trình mặt phẳng đi qua hai điểm: (x - x1)(y2 - y1) - (y - y1)(x2 - x1) = 0
Điểm giao thứ nhất: (1/2, 3/2, 5/2) Điểm giao thứ hai: (-5/6, 1/6, -1/6)
Thay các giá trị vào công thức, ta có: (x - 1/2)((1/6) - (3/2)) - (y - 3/2)((-5/6) - (1/2)) + (z - 5/2)((-1/6) - (3/2)) = 0 -2x + 2y - z + 4 = 0
Vậy phương trình mặt phẳng (P) là: -2x + 2y - z + 4 = 0.
Tiếp theo, để tính bán kính đường tròn giao tuyến, ta tính khoảng cách từ tâm mặt cầu đến mặt phẳng (P). Khoảng cách này chính bằng bán kính đường tròn giao tuyến.
Đặt điểm A là tâm mặt cầu (x0, y0, z0) = (0, -1, 2). Khoảng cách từ A đến mặt phẳng (P) được tính bằng công thức: d = |Ax + By + Cz + D| / sqrt(A^2 + B^2 + C^2)
Thay các giá trị vào công thức, ta có: d = |(0)(-2) + (-1)(2) + (2)(-1) + 4| / sqrt((-2)^2 + 2^2 + (-1)^2) d = 5 / sqrt(9) d = 5/3
Vậy bán kính đường tròn giao tuyến là 5/3.
Vậy đáp án đúng là: (P): -2x + 2y - z + 4 = 0; r = 5/3
14.
\(d\left(I;\left(P\right)\right)=\frac{\left|1-2.2+2-8\right|}{\sqrt{1^2+\left(-2\right)^2+\left(-2\right)^2}}=3\)
Áp dụng định lý Pitago:
\(R=\sqrt{4^2+d^2\left(I;\left(P\right)\right)}=\sqrt{4^2+3^2}=5\)
Phương trình mặt cầu:
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=25\)
15.
\(\overrightarrow{AB}=\left(2;1;-2\right)\) ; \(\overrightarrow{AC}=\left(-12;6;0\right)\)
\(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(12;24;24\right)=12\left(1;2;2\right)\)
\(\Rightarrow\) Mặt phẳng (ABC) nhận \(\left(1;2;2\right)\) là 1 vtpt
18.
\(D\in Ox\Rightarrow D\left(a;0;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AD}=\left(a-3;4;0\right)\\\overrightarrow{BC}=\left(4;0;-3\right)\end{matrix}\right.\)
\(AD=BC\Leftrightarrow\left(a-3\right)^2+4^2=4^2+\left(-3\right)^2\)
\(\Leftrightarrow\left(a-3\right)^2=9\Rightarrow\left[{}\begin{matrix}a=0\\a=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\)
11.
Mặt cầu (S) tâm \(I\left(1;-2;0\right)\) bán kính \(R=\sqrt{1^2+\left(-2\right)^2-\left(-4\right)}=3\)
\(d\left(I;\left(P\right)\right)=\frac{\left|1-2-0+4\right|}{\sqrt{1^2+1^2+\left(-1\right)^2}}=\sqrt{3}\)
Gọi bán kính đường tròn (C) là \(r\)
Áp dụng định lý Pitago:
\(r=\sqrt{R^2-d^2\left(I;\left(P\right)\right)}=\sqrt{6}\)
Diện tích đường tròn: \(S=\pi r^2=6\pi\)
Ta có \(A\left(4;0;-4\right)\) và \(B\left(1;-1;0\right)\) thuộc d
Gọi phương trình (P): \(ax+by+cz+4d=0\)
Do (P) chứa d \(\Rightarrow\left\{{}\begin{matrix}4a-4c+4d=0\\a-b+4d=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c-d\\b=a+4d=c+3d\end{matrix}\right.\)
Phương trình (P) viết lại:
\(\left(c-d\right)x+\left(c+3d\right)y+cz+4d=0\)
Do (P) tiếp xúc (S):
\(d\left(I;\left(P\right)\right)=R\Leftrightarrow\frac{\left|3\left(c-d\right)-3\left(c+3d\right)+c+4d\right|}{\sqrt{\left(c-d\right)^2+\left(c+3d\right)^2+c^2}}=3\)
\(\Leftrightarrow\left|c-8d\right|=3\sqrt{3c^2+4cd+10d^2}\)
\(\Leftrightarrow26c^2+52cd+26d^2=0\) \(\Rightarrow c=-d\)
Giao của (P) và trục Oz (\(x=0;y=0\)):
\(cz+4d=0\Rightarrow z=-\frac{4d}{c}=4\Rightarrow\left(0;0;4\right)\)
Trắc nghiệm: thay tọa độ B vào 4 đáp án chỉ có duy nhất đáp án A thỏa mãn => chọn A
Tự luận:
\(\overrightarrow{BA}=\left(1;0;1\right)\) , \(M\left(\frac{3}{2};0;\frac{1}{2}\right)\) là trung điểm AB
Mặt phẳng trung trực AB có pt:
\(1\left(x-\frac{3}{2}\right)+1\left(z-\frac{1}{2}\right)=0\Leftrightarrow x+z-2=0\)
\(\overrightarrow{BC}=\left(0;1;1\right)\) ; \(N\left(1;\frac{1}{2};\frac{1}{2}\right)\) là trung điểm BC
Pt mp trung trực của BC:
\(1\left(y-\frac{1}{2}\right)+1\left(z-\frac{1}{2}\right)=0\Leftrightarrow y+z-1=0\)
Tâm I của mặt cầu thỏa mãn: \(\left\{{}\begin{matrix}x+z-2=0\\y+z-1=0\\x+y+z-2=0\end{matrix}\right.\) \(\Rightarrow I\left(1;0;1\right)\)
\(\overrightarrow{BI}=\left(0;0;1\right)\Rightarrow R=BI=1\)
Phương trình: \(\left(x-1\right)^2+y^2+\left(z-1\right)^2=1\)
1/ \(\overrightarrow{AI}=\left(1;1;-3\right)\)
Do (P) tiếp xúc với (S) tại A \(\Rightarrow AI\perp\left(P\right)\Rightarrow\left(P\right)\) nhận \(\overrightarrow{AI}\) là một vtpt
\(\Rightarrow\) phương trình (P):
\(1\left(x-2\right)+1\left(y-1\right)-3\left(z-2\right)=0\Leftrightarrow x+y-3z+3=0\)
2/ \(\overrightarrow{u_d}=\left(2;-1;4\right)\) ; \(\overrightarrow{n_{\left(P\right)}}=\left(1;0;0\right)\)
Gọi A là giao điểm của d và (P) có pt \(x+3=0\)
\(\Rightarrow x_A=-3\) (suy từ pt (P)); \(y_A=-3;z_A=-5\) (thay \(x_A\) vào pt d) \(\Rightarrow A\left(-3;-3;-5\right)\)
Gọi (Q) là mặt phẳng qua d và vuông góc (P) \(\Rightarrow\left(Q\right)\) chứa A và (Q) có 1 vtpt là \(\overrightarrow{n_{\left(Q\right)}}=\left[\overrightarrow{u_d};\overrightarrow{n_{\left(P\right)}}\right]=\left(0;4;1\right)\)
\(\Rightarrow\) pt (Q): \(0\left(x+3\right)+4\left(y+3\right)+1\left(z+5\right)=0\Leftrightarrow4y+z+17=0\)
Gọi \(d'\) là hình chiếu của d lên (P) \(\Rightarrow\) \(d'\)có một vecto chỉ phương là \(\overrightarrow{u_{d'}}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(Q\right)}}\right]=\left(0;-1;4\right)\) và \(d'\) qua A
\(\Rightarrow\) pt đường thẳng \(d':\) \(\left\{{}\begin{matrix}x=-3+0.t\\y=-3+\left(-1\right).t\\z=-5+4.t\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-3-t\\z=-5+4t\end{matrix}\right.\) (1)
Đến đây thì đừng bối rối vì không thấy đáp án, vì việc viết pt tham số của đường thẳng sẽ ra các kết quả khác nhau khi ta chọn điểm khác nhau (một đường thẳng chứa vô số điểm vì thế cũng có vô số cách viết 1 pt tham số của đường thẳng)
Kiểm tra đáp án chính xác bằng cách loại trừ, đầu tiên nhìn vào vecto chỉ phương \(\left(0;-1;4\right)\) \(\Rightarrow\) loại đáp án B và C
Đáp án A họ sử dụng điểm có tọa độ \(\left(-3;-5;-3\right)\) để viết, thay thử 3 tọa độ này vào hệ (1), dòng 2 cho \(-5=-3-t\Rightarrow t=2\) ; dòng 3 cho \(-3=-5+4t\Rightarrow t=\dfrac{1}{2}\ne2\). Vậy A sai nốt, D là đáp án đúng (bạn có thể thay tạo độ \(\left(-3;-6;7\right)\) vào (1) sẽ thấy đúng)
3/ Gọi \(d\) đi qua A vuông góc \(\left(P\right)\)
Ta có \(\overrightarrow{n_{\left(P\right)}}=\left(1;3;-1\right)\Rightarrow\) chọn \(\overrightarrow{u_d}=\overrightarrow{n_{\left(P\right)}}=\left(1;3;-1\right)\) là 1vecto chỉ phương của d
\(\Rightarrow\) pt tham số d có dạng: \(\left\{{}\begin{matrix}x=2+t\\y=3+3t\\z=-t\end{matrix}\right.\) (2)
Lại giống câu trên, họ chọn 1 điểm khác để viết, nhưng câu này thì loại trừ đơn giản hơn vì chi có đáp án B là đúng vecto chỉ phương, chọn luôn ko cần suy nghĩ
Nếu ko tin, thay thử điểm \(\left(1;0;1\right)\) trong câu B vào (2)
Dòng 1 cho \(1=2+t\Rightarrow t=-1\)
Dòng 2 cho \(0=3+3t\Rightarrow t=-1\)
Dòng 3 cho \(1=-t\Rightarrow t=-1\)
3 dòng cho 3 giá trị t giống nhau, vậy điểm đó thuộc d \(\Rightarrow\) đáp án đúng
Phương trình d dạng tham số: \(\left\{{}\begin{matrix}x=1+2t\\y=1+2t\\z=-1+t\end{matrix}\right.\)
Gọi \(M\left(1+2t;1+2t;-1+t\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(2t-5;2t+1;t-1\right)\\\overrightarrow{BM}=\left(2t+1;2t+1;t+5\right)\end{matrix}\right.\)
\(\Rightarrow P=\sqrt{\left(2t-5\right)^2+\left(2t+1\right)^2+\left(t-1\right)^2}+\sqrt{\left(2t+1\right)^2+\left(2t+1\right)^2+\left(t+5\right)^2}\)
\(=\sqrt{9t^2-18t+27}+\sqrt{9t^2+18t+27}\)
\(=\sqrt{\left(3-3t\right)^2+18}+\sqrt{\left(3+3t\right)^2+18}\)
\(\ge\sqrt{\left(3-3t+3+3t\right)^2+4.18}=6\sqrt{3}\)
Mặt phẳng (P) qua A và vuông góc d có phương trình:
\(2\left(x-1\right)+2\left(y+1\right)+1\left(z-1\right)=0\)
\(\Leftrightarrow2x+2y+z-1=0\)
Đường thẳng d' song song d và đi qua B (nên d' vuông góc (P)) có dạng:
\(\left\{{}\begin{matrix}x=4+2t\\y=2+2t\\z=-2+t\end{matrix}\right.\)
\(\Rightarrow\) Giao điểm C của d' và (P) thỏa mãn:
\(2\left(4+2t\right)+2\left(2+2t\right)-2+t-1=0\Rightarrow t=-1\Rightarrow C\left(2;0;-3\right)\)
\(\Rightarrow\overrightarrow{AC}=\left(1;1;-4\right)\Rightarrow\) là 1 vtcp của \(\Delta\Rightarrow\) D là đáp án đúng