Oxyz, cho hai điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2020

bài khó quá nhỉ

27 tháng 4 2016

Ta có Pt d2 :x+2y-5=0

vì M ϵ d1 :x-y-1=0 nên M(m,m-1)

MA2 = (-1-m)2 + (2-m+1)2 = 1+2m+m2 +9-6m+m2 =2m-4m+10

<=> MA=\(\sqrt{2m^2-4m+10}\)

d(m,d)= \(\frac{\left|m+2m-2-5\right|}{\sqrt{1^2+2^2}}\)  =\(\frac{\left|3m-7\right|}{\sqrt{5}}\)

theo bài ra thì MA=d(M,d2)

=>\(\frac{\left|3m-7\right|}{\sqrt{5}}\)=\(\sqrt{2m^2-4m+10}\)      <=>|3m-7|=\(\sqrt{5}\)\(\sqrt{2m^2-4m+10}\)

<=>9m2 -42m +49=5(2m2-4m+10)

<=>9m-42m +49=10m2 -20m +50

<=>m2 +22m +1=0

<=>m= -11+2\(\sqrt{30}\) hoặc m=-11-2\(\sqrt{30}\)

=> M(-11+2\(\sqrt{30}\) ,-12+2\(\sqrt{30}\) ) hoặc M(-11-2\(\sqrt{30}\) ,-12-2\(\sqrt{30}\) )

 

AH
Akai Haruma
Giáo viên
15 tháng 1 2017

Lời giải:

a) Gọi phương trình đường thẳng có dạng $y=ax+b$ $(d)$

\(B,C\in (d)\Rightarrow \left\{\begin{matrix} 3=2a+b\\ -3=-4a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=1\\ b=1\end{matrix}\right.\Rightarrow y=x+1\)

Vậy PT đường thẳng chứa cạnh $BC$ có dạng $y=x+1$

b) Tương tự, ta lập được phương trình đường thẳng chứa cạnh $AC$ là \((d_1):y=\frac{2x}{5}-\frac{7}{5}\).

Gọi PT đường cao đi qua $B$ của tam giác $ABC$ là \((d'):y=ax+b\)

\((d')\perp (d_1)\Rightarrow \frac{2}{5}a=-1\Rightarrow a=\frac{-5}{2}\).

Mặt khác \(B\in (d')\Rightarrow 3=\frac{-5}{2}.2+b\Rightarrow b=8\)

\(\Rightarrow (d'):y=\frac{-5x}{2}+8\)

c) Gọi điểm thỏa mãn ĐKĐB là $M(a,b)$

Ta có: \(M\in (\Delta)\Rightarrow 2a+b-3=0\) $(1)$

$M$ cách đều $A,B$ \(\Rightarrow MA^2=MB^2\Rightarrow (a-1)^2+(b+1)^2=(a-2)^2+(b-3)^2\)

\(\Leftrightarrow 2-2a+2b=13-4a-6b\)

\(\Leftrightarrow 11-2a-8b=0(2)\)

Từ \((1);(2)\Rightarrow \left\{\begin{matrix} a=\frac{13}{14}\\ b=\frac{8}{7}\end{matrix}\right.\Rightarrow M\left ( \frac{13}{14};\frac{8}{7} \right )\)

15 tháng 1 2017

con nếu đề bài cho 1 điểm và phương trình đường thẳng của tam giác muốn tìm phương trình đường cao còn lại vầ các cạnh thj làm thế nào

1 tháng 4 2016

Cho hàm số y=x33m2x2+m. Tìm m

để đồ thị hàm số có cực đại, cực tiểu.

  1. m0
  2. m>0 (chọn câu này là thành câu trắc nghiệm hoàn chỉnh nhé hoc24)
  3. m<0
  4. m=0

Cho em hỏi em có được 3GP không ạ !

Bài 3:

Do a và b đều không chia hết cho 3 nhưng khi chia cho 3 thì có cùng số dư nên\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\\\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\end{matrix}\right.\)

TH1:\(\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\)

\(\Rightarrow ab-1=\left(3n+1\right)\left(3m+1\right)-1\)

\(\Rightarrow ab-1=9nm+3m+3n+1-1=9nm+3m+3n⋮3\) nên là bội của 3 (đpcm)

TH2:\(\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\)

\(\Rightarrow ab-1=\left(3n+2\right)\left(3m+2\right)-1\)

\(\Rightarrow ab-1=9nm+6m+6n+4-1=9nm+6m+6n+3⋮3\) nên là bội của 3 (đpcm)

Vậy ....

Bài 2:

\(B=\frac{1}{2010.2009}-\frac{1}{2009.2008}-\frac{1}{2008.2007}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow B=\frac{1}{2010.2009}-\left(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

Đặt A=\(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\)

\(\Rightarrow A=\frac{2009-2008}{2009.2008}+\frac{2008-2007}{2008.2007}+...+\frac{3-2}{3.2}+\frac{2-1}{2.1}\)

\(\Rightarrow A=\frac{2-1}{2.1}+\frac{3-2}{3.2}+...+\frac{2008-2007}{2008.2007}+\frac{2009-2008}{2009.2008}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2008}-\frac{1}{2009}\)

\(\Rightarrow A=1-\frac{1}{2009}\)

\(\Rightarrow B=\frac{1}{2010.2009}-A=\frac{1}{2010.2009}-\left(1-\frac{1}{2009}\right)\)

\(\Rightarrow B=\frac{1}{2010.2009}+\frac{1}{2009}-1=\frac{2011}{2010.2009}-1\)