K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

Đáp án A

 M (a;b;c)

 

28 tháng 7 2017

Đáp án B.

11 tháng 3 2018

NV
4 tháng 2 2021

Gọi G là trọng tâm tam giác ABC \(\Rightarrow G\left(2;1;0\right)\)

\(T=MA^2+MB^2+MC^2\)

\(T=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)

\(T=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(T=3MG^2+GA^2+GB^2+GC^2\)

Do \(GA^2+GB^2+GC^2\) cố định nên \(T_{min}\) khi \(MG_{min}\)

\(\Rightarrow M\) là hình chiếu vuông góc của G lên (P)

Gọi (d) là đường thẳng qua G và vuông góc (P) \(\Rightarrow\) pt (d): \(\left\{{}\begin{matrix}x=2+t\\y=1+t\\z=t\end{matrix}\right.\)

M là giao điểm (d) và (P) nên thỏa mãn:

\(2+t+1+t+t=0\Leftrightarrow t=-1\) \(\Rightarrow M\left(1;0;-1\right)\)

11 tháng 11 2017

Chọn D

Với mọi điểm I ta có:

Suy ra tọa độ điểm I là (0; 1; 2)Khi đó do đó S nhỏ nhất khi N là hình chiếu của I lên mặt phẳng (P) (chú ý: I là điểm cố định không đổi)

Phương trình đường thẳng đi qua I và vuông góc với mặt phẳng (P) là: 

1 tháng 6 2017

Chọn A

 

Gọi I, O lần lượt là trung điểm của AB và IC, khi đó với điểm M bất kỳ ta luôn có

nên d nhỏ nhất khi và chỉ khi  nên M là hình chiếu vuông góc của O lên (P). A(0; -2; -1), B (-2,-4,3) => I (-1 ; -3 ; 1), kết hợp với C (1; 3; -1) ta có O (0;0;0)

Đường thẳng qua O (0;0;0) vuông góc với (P) có phương trình

Giao điểm của d và (P) chính là hình chiếu vuông góc M của O (0;0;0) lên mặt phẳng (P).

 

5 tháng 1 2017

Chọn B

 

Ta có A, B cùng nằm về một phía của (P). Gọi A' đối xứng với A qua (P) suy ra A' (-2; 2; 1). Ta có MA + MB = MA' + MB ≥ BA'. Dấu bằng xảy ra khi M là giao điểm của BA' và (P). Xác định được . Suy ra Chọn B

14 tháng 2 2018

Chọn A

Gọi (Q) là mặt phẳng đi qua M (2;2; -3) và song song với mặt phẳng (P).

Suy ra (Q):2x+y+z-3=0.

Do Δ // (P) nên Δ (Q)).

D (N, Δ) đạt giá trị nhỏ nhất ó Δ đi qua N', với N' là hình chiếu của N lên (Q).

Gọi d là đường thẳng đi qua N và vuông góc (P), 

Ta có N’ d => N' (-4+2t;2+t;1+t); N’ (Q) => t = 4/3

  cùng phương 

Do |a|, |b| nguyên tố cùng nhau nên chọn 

Vậy  |a| + |b| + |c| = 15.

25 tháng 8 2018

Chọn A

Gọi  là trọng tâm tam giác ABC. Suy ra: G(2;-2;2)

Do tổng GAGBGC2 không đổi nên MAMBMC2 đạt giá trị nhỏ nhất khi và chỉ khi GM2 nhỏ nhất

Mà S nằm trên mặt phẳng (Oyz) nên M là hình chiếu vuông góc của G lên mặt phẳng (Oyz). Suy ra: M(0;-2;2)

Vậy P = x+y+z = 0 + (-2) + 2 = 0