Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi C là trung điểm của AB ⇒ C(0;1;-1) ⇒ phương trình đường thẳng qua C và song song với AB là: x 1 = y - 1 - 1 = z + 1 2
Chọn D
Gọi vectơ pháp tuyến của mặt phẳng (P) là , a²+b²+c²>0.
Phương trình mặt phẳng (P): a(x-4)+b (y-3)+c (z-4)=0.
Do (P) // Δ nên -3a+2b+2c=0 => 3a = 2 (b + c)
Mặt phẳng (P) tiếp xúc với (S) nên
Thay 3a=2 (c+b ) vào (*) ta được:
TH1: 2b-c=0, chọn b=1; c=2 => a = 2 => (P): 2x+y+2z-19=0 (thỏa).
TH2: b-2c=0, chọn c=1; b=2 => a = 2 => (P): 2x+2y+z-18=0 (loại do Δ ⊂ (P))
Đáp án C
Mặt phẳng cần tìm vuông góc với ∆ nên nhận vecto chỉ phương của ∆ là (3; -2; 1) làm vecto pháp tuyến.
Phương trình mặt phẳng cần tìm là:
Chọn C
Gọi M là trung điểm của AC. Khi đó M thuộc vào đường trung tuyến kẻ từ B của tam giác ABC.
Giả sử M (3 – t ; 3 + 2t ; 2 – t) ∈ Δ suy ra C (4-2t; 3+4t; 1-2t).
Mà C thuộc và đường phân giác trong d của góc C nên ta có:
Suy ra C (4; 3; 1).
Gọi H là hình chiếu vuông góc của A trên đường phân giác trong d.
Suy ra H (2+2t';4-t';2-t')
Ta có ó 2. 2t'+ (-1) (1-t')+ (-1) (-1-t')=0 ó 4t'-1+t'+1+t'=0 ó t'=0
=> H (2;4;2).
Gọi A' đối xứng với A qua đường phân giác trong d.
Suy ra A’ ∈ (BC) và A' (2;5;1). Khi đó là vectơ chỉ phương của đường thẳng BC.
Đáp án C
Phương pháp:
+) Tam giác ABC có trung tuyến BM và phân giác CD.
+) Tham số hóa tọa độ điểm M là trung điểm của AC, tìm tọa độ điểm C theo tọa độ điểm M.
+) Tìm tọa độ điểm N đối xứng với M qua CD =>N ∈ BC => Phương trình đường thẳng BC
+) Tìm tọa độ điểm B=BM ∩ BC, khi đó mọi vector cùng phương với AB đều là VTCP của AB.
Cách giải:
Tam giác ABC có trung tuyến BM và phân giác CD.
Gọi M(30t; 3+2t;2-t) ∈ BM là trung điểm của AC ta có
Gọi H là hình chiếu của M trên CD ta có
Gọi N là điểm đối xứng với M qua CD => H là trung điểm của MN
Do CD là phân giác của góc C nên N ∈ BC, do đó phương trình đường thẳng CB là
Xét hệ phương trình
=> B(2;5;1)
Đáp án A.
Đường thẳng d qua điểm M(2;-2;1) và có vectơ chỉ phương u → = ( - 3 ; 1 ; - 2 )
Đường thẳng d' qua điểm N(0;4;2) và có vectơ chỉ phương u ' → = 6 ; - 2 ; 4
Ta có - 3 6 = 1 - 2 = - 2 4 nếu u → , u ' → cùng phương. Lại có M 2 ; - 2 ; - 1
Vậy d ∥ d '
Đáp án A
Vì hai đường thẳng d và d’ song song với nhau nên đường thẳng a cần tìm cũng song song với 2 đường thẳng nên a nhận u ⇀ =(3;1;-2) làm vecto chỉ phương.
Gọi A(2;-3;4) ∈ d ⇒ phương trình mặt phẳng (P) qua A vuông góc với d là: 3x+y-2z+5=0
Giao điểm H của (P) và d’ là H 4 7 ; - 15 7 ; - 16 7 . khi đó trung điểm của AH là I 9 7 ; - 18 7 ; 6 7
Thay tọa độ điểm I vào xem phương trình nào thỏa mãn.