Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Mặt cầu (S) có tâm I(1;1;1). Gọi E là điểm thoả mãn
T nhỏ nhất khi ME nhỏ nhất <=> M là 1 trong 2 giao điểm của đường thẳng IE và mặt cầu (S).
Chọn A
Gọi G là trọng tâm tam giác ABC. Ta có G (0; 0; 3) và G ∉ (S)
Khi đó:
Ta lại có, mặt cầu (S) có bán kính R = 1 tâm I (0;0;1) thuộc trục Oz, và (S) qua O.
Mà G ∈ Oz nên MG ngắn nhất khi M = Oz ∩ (S). Do đó M (0;0;2). Vậy MA = √2
Chọn A
Gọi là trọng tâm tam giác ABC. Suy ra: G(2;-2;2)
Do tổng GA2 + GB2 + GC2 không đổi nên MA2 + MB2 + MC2 đạt giá trị nhỏ nhất khi và chỉ khi GM2 nhỏ nhất
Mà S nằm trên mặt phẳng (Oyz) nên M là hình chiếu vuông góc của G lên mặt phẳng (Oyz). Suy ra: M(0;-2;2)
Vậy P = x+y+z = 0 + (-2) + 2 = 0
Chọn A
Thay tọa độ hai điểm A (3;1;0), B (-9;4;9) vào vế trái phương trình mặt phẳng (P), ta có
2. 3-1+0+1=6 > 0 và 2. (-9)-4+9+1 = -12 < 0.
Nên suy ra, hai điểm A, B nằm khác phía với mặt phẳng (P).
Gọi A' (-1;3;-2) là điểm đối xứng với điểm A qua mặt phẳng (P). Ta có
Dấu “=” xảy ra khi và chỉ khi A', B, I thẳng hàng và I nằm ngoài đoạn A'B. Suy ra I là giao điểm của đường thẳng A'B và mặt phẳng (P).
Ta có , nên suy ra phương trình đường thẳng A'B là .
Tọa độ điểm I là nghiệm của hệ phương trình
Vậy I (7;2;13) nên a+b+c=7+2+ (-13)=-4.
Đáp án C.