Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp:
Đường thẳng
có 1 VTCP là u 1 → =(a;b;c). Mọi vectơ v → =k u → (k ∈ Z)cùng phương với vecto u → đều là VTCP của đường thẳng d.
Cách giải: Đường thẳng d nhận u → =(1;-1;1) là 1 VTCP. Mọi vecto cùng phương với vecto đều là VTCP của đường thẳng d.
Ta thấychỉ có đáp án D, vecto u 1 → =(1;1;1) không cùng phương với u → =(1;-1;1) nên u 1 → =(1;1;1) không là VTCP của đường thẳng d.
Đáp án B
Ta có =(2;3;4). Suy ra véc-tơ =(2;3;4) là một véc-tơ chỉ phương của đường thẳng AB.
Đáp án D.
Từ phương trình tổng quát của mặt phẳng (P) suy ra véc tơ pháp tuyến của mặt phẳng (P) là
Đáp án B
vuông góc thì d có thể nằm trong (P).
d song song (P) thì vuông góc .
d vuông góc (P) thì cùng phương .
Đáp án B