K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Chọn D

Đường thẳng d đi qua A nên d (B; d) BA, do đó khoảng cách từ B đến d lớn nhất khi , với  là vectơ chỉ phương của d.

20 tháng 1 2018

21 tháng 10 2018

 Đáp án C

Phương pháp

Gọi H là hình chiếu của B trên mặt phẳng (Q) đi qua A và song song với (P). Khi đó

Cách giải

Gọi (Q) là mặt phẳng đi qua A và song song với (P) ta tìm được phương trình mặt phẳng (Q): (P): x-2y+2z-5=0, khi đó d  ∈ (Q)

Gọi H là hình chiếu của B trên (Q) ta có 

Phương trình đường thẳng d’ đi qua B và vuông góc với (Q) là

Vậy phương trình đường thẳng d cần tìm là d:

  x + 3 26 = y 11 = z - 1 2

20 tháng 11 2019

4 tháng 7 2018

Chọn B

25 tháng 12 2017

Đáp án B.

3 tháng 5 2018

Chọn D

Xét hàm số:

Do đó d (B; d) nhỏ nhất khi f(t) đạt giá trị nhỏ nhất bằng 27 tại t = 2/3. Suy ra . Chọn một vectơ chỉ phương của đường thẳng d là

Vậy phương trình đường thẳng 

11 tháng 5 2018

8 tháng 4 2016


B C A D H K J S

Kẻ \(SH\perp AC\left(H\in AC\right)\)

Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)

\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)

\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)

\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)

Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)

Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)

Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)

\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)

Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)

7 tháng 4 2017

Gọi (Q) là mặt phẳng đi qua A và song song với (P) thì phương trình của (Q) là (x + 2) + 2(y + 1) - (z - 1) = 0 hay x + 2y - z + 5 = 0. Gọi H là hình chiếu vuông góc của B lên (Q). Giả sử Δ là đường thẳng qua A và song song với (P), I là chân đường vuông góc kẻ từ B đến ∆ . Khi đó I ∈ (Q) và BH ≤ BI.

Do đó AH chính là đường phải tìm.

Gọi d là đường thẳng đi qua B và vuông góc với (Q).

Phương trình của d là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Để tìm giao điểm H = d ∩ (Q) ta thay phương trình của d vào phương trình của (Q), ta có:

6 + t + 2(6 + 2t) - (5 - t) + 5 = 0 ⇒ t = -3.

Do đó H = (3; 0; 8)

Phương trình đường thẳng AH là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12