Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x - y + z -1 =0 Điểm nào dưới đây thuộc (P)

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x - y + z -1 =0 Điểm nào dưới đây thuộc (P)
Đáp án B
M(a;b;1) thuộc mặt phẳng (P): 2x – y + z – 3 = 0 => 2a – b + 1 – 3 = 0 => 2a – b – 2 = 0
Đáp án B
Phương pháp: (P) cách đều B, C ó d(B;(P)) = d(c;(P))
TH1: BC // (P)
TH2: I ∈ (P), với I là trung điểm của BC
Cách giải:
Ta có:
(P) cách đều B, C ó d(B;(P)) = d(c;(P))
TH1: BC // (P)
=> (P) đi qua O và nhận là 1 VTPT
TH2: I ∈ (P) với I là trung điểm của BC
=> (P): 6x – 3y + 4z = 0
Dựa vào các đáp án ta chọn được đáp án B
Đáp án A
Khi đó đường thẳng d vuông góc với ∆ tại A. Chọn u d → = u Δ → , n P → = − 1 ; 6 ; 4 .
Như vậy (Q) là mặt phẳng chứa hai đường thẳng cắt nhau a và ∆ .
Do đó (Q) đi qua A và nhận vectơ u Q → = u Δ → , u d → = 10 ; − 7 ; 13 .
Phương trình mặt phẳng Q : 10 x − 2 − 7 y − 1 + 13 z = 0 ⇔ 10 x − 7 y + 13 z − 13 = 0