Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Phương pháp giải: Lập phương trình mặt phẳng đi qua điểm và vuông góc với đường thẳng. Khi đó, tọa độ giao điểm của d và (P) chính là tọa độ hình chiếu.
Lời giải: VTCP của đường thẳng d
Ta có:
Phương trình mặt phẳng (P) đi qua M, vuông góc với d là :
Đáp án C.
Vtcp của ∆ là: u → = ( 1 ; 2 ; 1 ) . Phương trình mặt phẳng qua M và nhận u → = ( 1 ; 2 ; 1 ) làm vtpt là:
=> tọa độ của H là nghiệm của hệ phương trình
Đáp án B
Vì M là hình chiếu vuông góc của I trên ∆
Khi đó
Vậy M(5;-2;-5) hoặc M(5;-8;1) => bc =10
Chọn D
Mặt phẳng (P) vuông góc với đường thẳng d nên (P) nhận vecto chỉ phương của d là một vecto pháp tuyến. Ta có phương trình mặt phẳng (P) là
Đáp án C
HD: Gọi H(1+2t;-1+t;2-t) là hình chiếu của A trên d
Suy ra H(3;0;1), phương trình đường thẳng AH là
Chọn A
Mặt phẳng qua I vuông góc với d có phương trình
Gọi H là hình chiếu của I trên đường thẳng d.
Thay x, y, z từ phương trình của d vào (1) ta có
Đáp án A
Xét yếu tố vuông góc nhập
hoành độ, tung độ, cao độ của các đáp án.
Ta thấy chỉ có đáp án (4; -1; 3) cho kết quả
bằng 0.